Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters

[1]  Katsuhisa Tanaka,et al.  The relationship between magneto-optical properties and molecular chirality , 2016 .

[2]  Angelo Monguzzi,et al.  Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power. , 2015, Nature materials.

[3]  Yu Liu,et al.  Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants. , 2015, Chemical communications.

[4]  F. Artizzu,et al.  Ln3Q9 as a molecular framework for ion-size-driven assembly of heterolanthanide (Nd, Er, Yb) multiple near-infrared emitters. , 2015, Chemistry.

[5]  T. Nakanishi,et al.  Effective photosensitized energy transfer of nonanuclear terbium clusters using methyl salicylate derivatives. , 2015, The journal of physical chemistry. A.

[6]  Zubair Ahmed,et al.  Efficient photoluminescent complexes of 400–1800 nm wavelength emitting lanthanides containing organic sensitizers for optoelectronic devices , 2014 .

[7]  S. Eliseeva,et al.  Lanthanide-to-lanthanide energy-transfer processes operating in discrete polynuclear complexes: can trivalent europium be used as a local structural probe? , 2014, Chemistry.

[8]  L. Cunha-Silva,et al.  A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors. , 2014, Dalton transactions.

[9]  Katsuhisa Tanaka,et al.  Enhancement of optical Faraday effect of nonanuclear Tb(III) complexes. , 2014, Inorganic chemistry.

[10]  L. Cunha-Silva,et al.  Tetranuclear lanthanide(III) complexes with a zigzag topology from the use of pyridine-2,6-dimethanol: synthetic, structural, spectroscopic, magnetic and photoluminescence studies. , 2014, Inorganic chemistry.

[11]  N. Geum,et al.  Highly luminescent Tb(III) macrocyclic complex based on a DO3A hosting unit and an appended carboxylated N,C-pyrazolylpyridine antenna , 2014 .

[12]  K. Buczko,et al.  Interaction of lanthanide β-diketonate complexes with polyvinylpyrrolidone: proton-controlled switching of Tb3+ luminescence. , 2014, The journal of physical chemistry. B.

[13]  H. Hibino,et al.  Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. , 2013, Chemical communications.

[14]  E. K. Irish,et al.  Vibration-assisted resonance in photosynthetic excitation-energy transfer , 2013, 1306.6650.

[15]  Takayuki Nakanishi,et al.  Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. , 2013, Angewandte Chemie.

[16]  P. Junk,et al.  Variation of structural motifs in lanthanoid hydroxo clusters by ligand modification , 2013 .

[17]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[18]  Svetlana V. Eliseeva,et al.  Intriguing aspects of lanthanide luminescence , 2013 .

[19]  Patrick S. Barber,et al.  A water-soluble Pybox derivative and its highly luminescent lanthanide ion complexes. , 2012, Journal of the American Chemical Society.

[20]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[21]  T. Wesołowski,et al.  Optimizing sensitization processes in dinuclear luminescent lanthanide oligomers: selection of rigid aromatic spacers. , 2011, Journal of the American Chemical Society.

[22]  Shaomin Ji,et al.  Ruthenium(II) polyimine-coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet-triplet annihilation based upconversion. , 2011, Angewandte Chemie.

[23]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[24]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[25]  L. Smentek,et al.  Efficiency of the energy transfer in lanthanide-organic chelates; spectral overlap integral , 2010 .

[26]  Kazuya Kikuchi,et al.  Design, synthesis and biological application of chemical probes for bio-imaging. , 2010, Chemical Society reviews.

[27]  S. Achilefu,et al.  Fluorescence lifetime measurements and biological imaging. , 2010, Chemical reviews.

[28]  Chun-hui Huang,et al.  Rare Earth Coordination Chemistry: Fundamentals and Applications , 2010 .

[29]  K. Raymond,et al.  From antenna to assay: lessons learned in lanthanide luminescence. , 2009, Accounts of chemical research.

[30]  O. Malta Mechanisms of non-radiative energy transfer involving lanthanide ions revisited , 2008 .

[31]  Uli Würfel,et al.  Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Xiao-jun Liu,et al.  Listening to lanthanide complexes: determination of the intrinsic luminescence quantum yield by nonradiative relaxation. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  T. Yamashita,et al.  Concentration and temperature effects on the spectroscopic properties of Tb3+ doped borosilicate glasses , 2007 .

[34]  Yasunori Tsukahara,et al.  Energy-Transfer Mechanism in Photoluminescent Terbium(III) Complexes Causing Their Temperature-Dependence , 2007 .

[35]  Joseph Shinar,et al.  Molecular-wire behavior of OLED materials: exciton dynamics in multichromophoric Alq3-oligofluorene-Pt(II)porphyrin triads. , 2006, Journal of the American Chemical Society.

[36]  V. Malatesta,et al.  Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide Complexes , 2006 .

[37]  Y. Urano,et al.  Modulation of luminescence intensity of lanthanide complexes by photoinduced electron transfer and its application to a long-lived protease probe. , 2006, Journal of the American Chemical Society.

[38]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[39]  Graham R. Fleming,et al.  Two-dimensional spectroscopy of electronic couplings in photosynthesis , 2005, Nature.

[40]  S. Alvarez,et al.  The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. , 2005, Chemistry.

[41]  Yuji Wada,et al.  Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications , 2004 .

[42]  P. B. Glover,et al.  Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands. , 2004, Journal of the American Chemical Society.

[43]  R. Poteau,et al.  Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. , 2004, Dalton transactions.

[44]  Horst Puschmann,et al.  Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. , 2002, Chemical reviews.

[45]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[46]  Suning Wang,et al.  Toward constructing nanoscale hydroxo-lanthanide clusters: syntheses and characterizations of novel tetradecanuclear hydroxo-lanthanide clusters. , 2002, Chemical communications.

[47]  Stephen R. Forrest,et al.  High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence , 2001 .

[48]  K. Raymond,et al.  Plutonium(IV) sequestration: structural and thermodynamic evaluation of the extraordinarily stable cerium(IV) hydroxypyridinonate complexes. , 2000, Inorganic chemistry.

[49]  M. Mcginniss,et al.  Review: 2000 , 2000, Immunohematology.

[50]  D. Avnir,et al.  Continuous Symmetry Measures. 5. The Classical Polyhedra. , 1998, Inorganic chemistry.

[51]  Ken-ichi Machida,et al.  Photovoltaic Cell Characteristics of Hybrid Silicon Devices with Lanthanide Complex Phosphor‐Coating Film , 1997 .

[52]  Veli-Matti Mukkala,et al.  Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield , 1997 .

[53]  J. Adam,et al.  Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions , 1996 .

[54]  J. Beitz f-State luminescence of trivalent lanthanide and actinide ions in solution , 1994 .

[55]  T. Kushida Energy Transfer and Cooperative Optical Transitions in Rare-Earth Doped Inorganic Materials. I. Transition Probability Calculation , 1973 .

[56]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[57]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[58]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[59]  L. Duysens Transfer of Light Energy Within the Pigment Systems Present in Photosynthesizing Cells , 1951, Nature.

[60]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[61]  Kazuhiro Aoki,et al.  Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors , 2009, Nature Protocols.

[62]  A. de Bettencourt-Dias Lanthanide-based emitting materials in light-emitting diodes. , 2007, Dalton transactions.

[63]  P. De Bièvre,et al.  ATOMIC WEIGHTS OF THE ELEMENTS: REVIEW 2000 , 2003 .

[64]  R. Longo,et al.  Spectroscopic properties and design of highly luminescent lanthanide coordination complexes , 2000 .

[65]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[66]  S. Tobita,et al.  Paramagnetic metal effect on the ligand localized S/sub 1/. -->. T/sub 1/ intersystem crossing in the rare-earth-metal complexes and methyl salicylate , 1985 .

[67]  Baldassare Di Bartolo,et al.  Energy transfer processes in condensed matter , 1984 .

[68]  Th. F rster 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[69]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .