Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints
暂无分享,去创建一个
[1] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[2] Timo Kuosmanen,et al. A more efficient algorithm for Convex Nonparametric Least Squares , 2013, Eur. J. Oper. Res..
[3] Jeffrey S. Racine,et al. Additive Regression Splines With Irrelevant Categorical and Continuous Regressors , 2013 .
[4] Raymond J Carroll,et al. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error , 2011, Journal of the American Statistical Association.
[5] Murray D. Burke,et al. Strong Approximations in Probability and Statistics , 2011, International Encyclopedia of Statistical Science.
[6] Jinglai Shen,et al. A class of grouped Brunk estimators and penalized spline estimators for monotone regression , 2010 .
[7] Herbert Hoijtink,et al. Testing Inequality Constrained Hypotheses in SEM Models , 2010 .
[8] X. Shao,et al. The Dependent Wild Bootstrap , 2010 .
[9] P. Phillips,et al. Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications , 2009 .
[10] Melanie Birke,et al. Nonparametric Option Pricing with No-Arbitrage Constraints , 2008 .
[11] Jayanta Kumar Pal,et al. LARGE SAMPLE PROPERTIES OF SHAPE RESTRICTED REGRESSION ESTIMATORS WITH SMOOTHNESS ADJUSTMENTS , 2007 .
[12] W. Härdle,et al. Nonparametric state price density estimation using constrained least squares and the bootstrap , 2006 .
[13] Qi Li,et al. Nonparametric Econometrics: Theory and Practice , 2006 .
[14] Holger Dette,et al. Estimating a Convex Function in Nonparametric Regression , 2007 .
[15] Holger Dette,et al. Strictly monotone and smooth nonparametric regression for two or more variables , 2005 .
[16] Kee-Hoon Kang,et al. Unimodal kernel density estimation by datra sharpening , 2005 .
[17] Jeroen K. Vermunt,et al. The order-restricted association model: Two estimation algorithms and issues in testing , 2004 .
[18] J. Jackson. Wiley Series in Probability and Mathematical Statistics , 2004 .
[19] Q. Lib,et al. Nonparametric estimation of regression functions with both categorical and continuous data , 2004 .
[20] Stephen J. Wright,et al. Primal-Dual Interior-Point Methods , 1997 .
[21] W. John Braun,et al. Data Sharpening for Nonparametric Inference Subject to Constraints , 2001 .
[22] Peter Hall,et al. Nonparametric Estimation of Hazard Rate Under the Constraint of Monotonicity , 2001 .
[23] E. Mammen,et al. A General Projection Framework for Constrained Smoothing , 2001 .
[24] P. Hall,et al. NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .
[25] Jianqing Fan,et al. Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .
[26] D. Andrews. Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .
[27] P. Hall,et al. Linear functions , 2018, Algebra and Geometry.
[28] Peter Schmidt,et al. Multiple comparisons with the best, with economic applications , 2000 .
[29] Christine Thomas-Agnan,et al. Smoothing Splines and Shape Restrictions , 1999 .
[30] M. C. Jones,et al. Testing Monotonicity of Regression , 1998 .
[31] Subhashis Ghosal,et al. TESTING MONOTONICITY OF REGRESSION By , 1998 .
[32] Joseph P. Romano,et al. Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .
[33] Jianqing Fan. Design-adaptive Nonparametric Regression , 1992 .
[34] Rosa L. Matzkin. Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models , 1991 .
[35] Enno Mammen,et al. Estimating a Smooth Monotone Regression Function , 1991 .
[36] J. Ramsay. Monotone Regression Splines in Action , 1988 .
[37] Rosa L. Matzkin. Nonparametric and Distribution-Free Estimation of the Binary Choice and the Threshold-Crossing Models , 1988 .
[38] Hari Mukerjee,et al. Monotone Nonparametric Regression , 1988 .
[39] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[40] Grace Wahba,et al. Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities , 1987 .
[41] Gene H. Golub,et al. Imposing curvature restrictions on flexible functional forms , 1984 .
[42] Timothy R. C. Read,et al. Multinomial goodness-of-fit tests , 1984 .
[43] H. Müller,et al. Estimating regression functions and their derivatives by the kernel method , 1984 .
[44] A. Gallant,et al. Unbiased determination of production technologies , 1982 .
[45] A. Gallant,et al. On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .
[46] Edward J. Wegman,et al. Isotonic, Convex and Related Splines , 1980 .
[47] H. Müller,et al. Kernel estimation of regression functions , 1979 .
[48] M. Priestley,et al. Non‐Parametric Function Fitting , 1972 .
[49] S. Afriat. THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .
[50] E. Nadaraya. On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .
[51] G. S. Watson,et al. Smooth regression analysis , 1964 .
[52] Selmer M. Johnson,et al. On a Linear-Programming, Combinatorial Approach to the Traveling-Salesman Problem , 1959 .
[53] William J. Cook,et al. Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.