Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints

Nonparametric smoothing under shape constraints has recently received much well-deserved attention. Powerful methods have been proposed for imposing a single shape constraint such as monotonicity and concavity on univariate functions. In this paper, we extend the monotone kernel regression method in Hall and Huang (2001) to the multivariate and multi-constraint setting. We impose equality and/or inequality constraints on a nonparametric kernel regression model and its derivatives. A bootstrap procedure is also proposed for testing the validity of the constraints. Consistency of our constrained kernel estimator is provided through an asymptotic analysis of its relationship with the unconstrained estimator. Theoretical underpinnings for the bootstrap procedure are also provided. Illustrative Monte Carlo results are presented and an application is considered.

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Timo Kuosmanen,et al.  A more efficient algorithm for Convex Nonparametric Least Squares , 2013, Eur. J. Oper. Res..

[3]  Jeffrey S. Racine,et al.  Additive Regression Splines With Irrelevant Categorical and Continuous Regressors , 2013 .

[4]  Raymond J Carroll,et al.  Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error , 2011, Journal of the American Statistical Association.

[5]  Murray D. Burke,et al.  Strong Approximations in Probability and Statistics , 2011, International Encyclopedia of Statistical Science.

[6]  Jinglai Shen,et al.  A class of grouped Brunk estimators and penalized spline estimators for monotone regression , 2010 .

[7]  Herbert Hoijtink,et al.  Testing Inequality Constrained Hypotheses in SEM Models , 2010 .

[8]  X. Shao,et al.  The Dependent Wild Bootstrap , 2010 .

[9]  P. Phillips,et al.  Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications , 2009 .

[10]  Melanie Birke,et al.  Nonparametric Option Pricing with No-Arbitrage Constraints , 2008 .

[11]  Jayanta Kumar Pal,et al.  LARGE SAMPLE PROPERTIES OF SHAPE RESTRICTED REGRESSION ESTIMATORS WITH SMOOTHNESS ADJUSTMENTS , 2007 .

[12]  W. Härdle,et al.  Nonparametric state price density estimation using constrained least squares and the bootstrap , 2006 .

[13]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[14]  Holger Dette,et al.  Estimating a Convex Function in Nonparametric Regression , 2007 .

[15]  Holger Dette,et al.  Strictly monotone and smooth nonparametric regression for two or more variables , 2005 .

[16]  Kee-Hoon Kang,et al.  Unimodal kernel density estimation by datra sharpening , 2005 .

[17]  Jeroen K. Vermunt,et al.  The order-restricted association model: Two estimation algorithms and issues in testing , 2004 .

[18]  J. Jackson Wiley Series in Probability and Mathematical Statistics , 2004 .

[19]  Q. Lib,et al.  Nonparametric estimation of regression functions with both categorical and continuous data , 2004 .

[20]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[21]  W. John Braun,et al.  Data Sharpening for Nonparametric Inference Subject to Constraints , 2001 .

[22]  Peter Hall,et al.  Nonparametric Estimation of Hazard Rate Under the Constraint of Monotonicity , 2001 .

[23]  E. Mammen,et al.  A General Projection Framework for Constrained Smoothing , 2001 .

[24]  P. Hall,et al.  NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .

[25]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[26]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[27]  P. Hall,et al.  Linear functions , 2018, Algebra and Geometry.

[28]  Peter Schmidt,et al.  Multiple comparisons with the best, with economic applications , 2000 .

[29]  Christine Thomas-Agnan,et al.  Smoothing Splines and Shape Restrictions , 1999 .

[30]  M. C. Jones,et al.  Testing Monotonicity of Regression , 1998 .

[31]  Subhashis Ghosal,et al.  TESTING MONOTONICITY OF REGRESSION By , 1998 .

[32]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[33]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[34]  Rosa L. Matzkin Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models , 1991 .

[35]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[36]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[37]  Rosa L. Matzkin Nonparametric and Distribution-Free Estimation of the Binary Choice and the Threshold-Crossing Models , 1988 .

[38]  Hari Mukerjee,et al.  Monotone Nonparametric Regression , 1988 .

[39]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[40]  Grace Wahba,et al.  Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities , 1987 .

[41]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[42]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[43]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[44]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .

[45]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[46]  Edward J. Wegman,et al.  Isotonic, Convex and Related Splines , 1980 .

[47]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[48]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[49]  S. Afriat THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .

[50]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[51]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[52]  Selmer M. Johnson,et al.  On a Linear-Programming, Combinatorial Approach to the Traveling-Salesman Problem , 1959 .

[53]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.