Highly Efficient, Compact Tm3+:RE2O3 (RE = Y, Lu, Sc) Sesquioxide Lasers Based on Thermal Guiding
暂无分享,去创建一个
Antonio Lucianetti | Tomas Mocek | Xavier Mateos | Valentin Petrov | Uwe Griebner | Josep Maria Serres | Magdalena Aguiló | Francesc Díaz | Venkatesan Jambunathan | Pavel Loiko | Christian Kränkel | T. Mocek | U. Griebner | V. Petrov | X. Mateos | P. Loiko | M. Aguiló | F. Díaz | C. Kränkel | J. M. Serres | A. Lucianetti | V. Jambunathan | Philipp Koopmann | P. Koopmann
[1] M. Pollnau,et al. Stochastic model of energy transfer processes among rare earth ions , 2018, Photonics Europe.
[2] Valentin Petrov,et al. Tm:CaGdAlO4: spectroscopy, microchip laser and passive Q-switching by carbon nanostructures , 2017, LASE.
[3] W. Sibbett,et al. Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm. , 2012, Optics letters.
[4] K. Petermann,et al. Femtosecond Yb:Lu(2)O(3) thin disk laser with 63 W of average power. , 2009, Optics letters.
[5] B. Uberuaga,et al. Determining the site preference of trivalent dopants in bixbyite sesquioxides by atomic-scale simulations , 2007 .
[6] K. Petermann,et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+:sesquioxide single crystal lasers. , 2011, Optics express.
[7] Bien Chann,et al. Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.
[8] B. Aull,et al. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .
[9] X. Mateos,et al. Thermo-optic properties of Yb:Lu2O3 single crystals , 2015 .
[10] L. Pauling,et al. 8. The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides , 1930 .
[11] Klaus Petermann,et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm , 2011 .
[12] Emilie Marmois,et al. Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature , 2012 .
[13] J. Zayhowski,et al. Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.
[14] Patrick Georges,et al. Thermo-optic characterization of Yb:CaGdAlO 4 laser crystal , 2014 .
[15] K. Petermann,et al. Efficient femtosecond high power Yb:Lu(2)O(3) thin disk laser. , 2007, Optics express.
[16] J. Zayhowski,et al. Tm:YVO(4) microchip laser. , 1995, Applied optics.
[17] J. J. Zayhowski. Microchip lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.
[18] Frederick Schmid,et al. Growth of Sapphire Disks from the Melt by a Gradient Furnace Technique , 1970 .
[19] Klaus Petermann,et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments , 2002 .
[20] A. P. Zinoviev,et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu 2 O 3 ceramics , 2012 .
[21] Günter Huber,et al. 175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. , 2012, Optics express.
[22] Xavier Mateos,et al. Thermal Lensing and Multiwatt Microchip Laser Operation of Yb:YCOB Crystals , 2016, IEEE Photonics Journal.
[23] Patrick Georges,et al. On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2006 .
[24] J. J. Zayhowski. Thermal Guiding in Microchip Lasers , 1991 .
[25] T. Sudmeyer,et al. Passively $Q$ -Switched Thulium Microchip Laser , 2016, IEEE Photonics Technology Letters.
[26] Václav Škoda,et al. High-efficient room-temperature CW operating Tm:YAP laser with microchip resonator , 2009, LASE.
[27] Philipp H. Klein,et al. Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3 Al5O12, and LaF3 in the Range 77°–300°K , 1967 .
[28] Donald D. Duncan,et al. Temperature coefficient of refractive index for candidate optical windows , 1990, Optics & Photonics.
[29] K. Petermann,et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .
[30] Marvin J. Weber,et al. Handbook of Optical Materials , 2002 .
[31] M. Abrashev,et al. Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study , 2014 .
[32] S. Lamrini,et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm. , 2013, Optics express.
[33] K. Petermann,et al. Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides , 2011 .
[34] Christian Krankel,et al. Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range , 2015, IEEE Journal of Selected Topics in Quantum Electronics.
[35] E. Heumann,et al. Tunable single-frequency thulium:YAG microchip laser with external feedback , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.
[36] Xavier Mateos,et al. Efficient Micro-Lasers Based on Highly Doped Monoclinic Double Tungstates , 2017, IEEE Journal of Quantum Electronics.
[37] Wilson Sibbett,et al. Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. , 2012, Optics express.
[38] Xavier Mateos,et al. Comparative spectroscopic and thermo-optic study of Tm:LiLnF_4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at 2 μm , 2017 .
[39] C. Goutaudier,et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic and monoclinic Gd2O3 ☆ , 2001 .
[40] Günter Huber,et al. Rare-earth-doped sesquioxides , 2000 .
[41] R. Stoneman,et al. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.
[42] Yung-Fu Chen,et al. Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality , 1996 .
[43] Günter Huber,et al. Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency. , 2007, Optics express.
[44] Xavier Mateos,et al. Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.
[45] Günter Huber,et al. Multi-watt laser operation and laser parameters of Ho-doped Lu_2O_3 at 212 μm , 2011 .
[46] G. Huber,et al. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. , 2012, Optics letters.
[47] U. Griebner,et al. Monoclinic Tm3+:MgWO4: a promising crystal for continuous-wave and passively Q-switched lasers at ∼2 μm. , 2017, Optics letters.
[48] G. Erbert,et al. Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration. , 2010, Optics letters.
[49] O. Yeheskel,et al. Bulk modulus of Sc2O3: Ab initio calculations and experimental results , 2011 .
[50] M. Pollnau,et al. Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.
[51] U Willamowski,et al. Measuring the absolute absorptance of optical laser components. , 1998, Applied optics.
[52] K. Petermann,et al. Temperature-dependent Sellmeier equations for rare-earth sesquioxides. , 2013, Applied optics.
[53] K. Petermann,et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3 , 2008 .
[54] H. Yagi,et al. Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser. , 2008, Optics letters.
[55] K. Petermann,et al. Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm. , 2011, Optics letters.
[56] Matthias Golling,et al. Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.
[57] Christian Kränkel,et al. Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range , 2015 .
[58] Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm , 2016 .
[59] O. Hunter,et al. Elastic Properties of Polycrystalline Thulium Oxide and Lutetium Oxide from 20° to 1000°C , 1970 .