Highly Efficient, Compact Tm3+:RE2O3 (RE = Y, Lu, Sc) Sesquioxide Lasers Based on Thermal Guiding

Cubic sesquioxides, RE<sub>2</sub>O<sub>3</sub>, where RE = Y, Lu or Sc, are attractive host crystals for thulium (Tm<sup>3+</sup>) doping. A comparison of the spectroscopic properties of Tm<sup>3+</sup>:RE<sub>2 </sub>O<sub>3</sub> crystals in terms of transition cross sections and cross-relaxation (CR) efficiency required for efficient upconversion pumping is presented. Thermo-optic properties of Tm<sup>3+</sup>:RE<sub>2</sub>O<sub>3 </sub> crystals (thermal lensing, fractional heat loading, and thermo-optic coefficients) are described. The positive thermal lens, broadband emission, and efficient CR of the Tm:RE<sub>2</sub>O<sub>3</sub> crystals enable the development of compact, highly efficient and power-scalable lasers operating above 2 μm, based on thermal guiding. Nowadays, Tm:Lu<sub>2</sub>O<sub>3</sub> microchip lasers are capable of generating nearly 5 W of output power at ∼2.06 μm with a slope efficiency <inline-formula><tex-math notation="LaTeX">$ \eta $</tex-math> </inline-formula> of 67% and in a rod geometry—up to 47.5 W with <inline-formula> <tex-math notation="LaTeX">$ \eta $</tex-math></inline-formula> of 59%. For multiwatt output at even longer wavelengths around 2.15 μm, Tm:Sc<sub>2</sub>O<sub>3</sub> is an interesting candidate.

[1]  M. Pollnau,et al.  Stochastic model of energy transfer processes among rare earth ions , 2018, Photonics Europe.

[2]  Valentin Petrov,et al.  Tm:CaGdAlO4: spectroscopy, microchip laser and passive Q-switching by carbon nanostructures , 2017, LASE.

[3]  W. Sibbett,et al.  Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm. , 2012, Optics letters.

[4]  K. Petermann,et al.  Femtosecond Yb:Lu(2)O(3) thin disk laser with 63 W of average power. , 2009, Optics letters.

[5]  B. Uberuaga,et al.  Determining the site preference of trivalent dopants in bixbyite sesquioxides by atomic-scale simulations , 2007 .

[6]  K. Petermann,et al.  Ultrashort pulse generation from diode pumped mode-locked Yb3+:sesquioxide single crystal lasers. , 2011, Optics express.

[7]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[9]  X. Mateos,et al.  Thermo-optic properties of Yb:Lu2O3 single crystals , 2015 .

[10]  L. Pauling,et al.  8. The Crystal Structure of Bixbyite and the C-Modification of the Sesquioxides , 1930 .

[11]  Klaus Petermann,et al.  Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm , 2011 .

[12]  Emilie Marmois,et al.  Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature , 2012 .

[13]  J. Zayhowski,et al.  Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.

[14]  Patrick Georges,et al.  Thermo-optic characterization of Yb:CaGdAlO 4 laser crystal , 2014 .

[15]  K. Petermann,et al.  Efficient femtosecond high power Yb:Lu(2)O(3) thin disk laser. , 2007, Optics express.

[16]  J. Zayhowski,et al.  Tm:YVO(4) microchip laser. , 1995, Applied optics.

[17]  J. J. Zayhowski Microchip lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[18]  Frederick Schmid,et al.  Growth of Sapphire Disks from the Melt by a Gradient Furnace Technique , 1970 .

[19]  Klaus Petermann,et al.  High melting sesquioxides: crystal growth, spectroscopy, and laser experiments , 2002 .

[20]  A. P. Zinoviev,et al.  Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu 2 O 3 ceramics , 2012 .

[21]  Günter Huber,et al.  175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. , 2012, Optics express.

[22]  Xavier Mateos,et al.  Thermal Lensing and Multiwatt Microchip Laser Operation of Yb:YCOB Crystals , 2016, IEEE Photonics Journal.

[23]  Patrick Georges,et al.  On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2006 .

[24]  J. J. Zayhowski Thermal Guiding in Microchip Lasers , 1991 .

[25]  T. Sudmeyer,et al.  Passively $Q$ -Switched Thulium Microchip Laser , 2016, IEEE Photonics Technology Letters.

[26]  Václav Škoda,et al.  High-efficient room-temperature CW operating Tm:YAP laser with microchip resonator , 2009, LASE.

[27]  Philipp H. Klein,et al.  Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3 Al5O12, and LaF3 in the Range 77°–300°K , 1967 .

[28]  Donald D. Duncan,et al.  Temperature coefficient of refractive index for candidate optical windows , 1990, Optics & Photonics.

[29]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[30]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[31]  M. Abrashev,et al.  Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study , 2014 .

[32]  S. Lamrini,et al.  Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm. , 2013, Optics express.

[33]  K. Petermann,et al.  Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides , 2011 .

[34]  Christian Krankel,et al.  Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  E. Heumann,et al.  Tunable single-frequency thulium:YAG microchip laser with external feedback , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[36]  Xavier Mateos,et al.  Efficient Micro-Lasers Based on Highly Doped Monoclinic Double Tungstates , 2017, IEEE Journal of Quantum Electronics.

[37]  Wilson Sibbett,et al.  Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. , 2012, Optics express.

[38]  Xavier Mateos,et al.  Comparative spectroscopic and thermo-optic study of Tm:LiLnF_4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at 2 μm , 2017 .

[39]  C. Goutaudier,et al.  Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic and monoclinic Gd2O3 ☆ , 2001 .

[40]  Günter Huber,et al.  Rare-earth-doped sesquioxides , 2000 .

[41]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[42]  Yung-Fu Chen,et al.  Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality , 1996 .

[43]  Günter Huber,et al.  Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency. , 2007, Optics express.

[44]  Xavier Mateos,et al.  Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.

[45]  Günter Huber,et al.  Multi-watt laser operation and laser parameters of Ho-doped Lu_2O_3 at 212 μm , 2011 .

[46]  G. Huber,et al.  Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. , 2012, Optics letters.

[47]  U. Griebner,et al.  Monoclinic Tm3+:MgWO4: a promising crystal for continuous-wave and passively Q-switched lasers at ∼2  μm. , 2017, Optics letters.

[48]  G. Erbert,et al.  Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration. , 2010, Optics letters.

[49]  O. Yeheskel,et al.  Bulk modulus of Sc2O3: Ab initio calculations and experimental results , 2011 .

[50]  M. Pollnau,et al.  Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.

[51]  U Willamowski,et al.  Measuring the absolute absorptance of optical laser components. , 1998, Applied optics.

[52]  K. Petermann,et al.  Temperature-dependent Sellmeier equations for rare-earth sesquioxides. , 2013, Applied optics.

[53]  K. Petermann,et al.  Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3 , 2008 .

[54]  H. Yagi,et al.  Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser. , 2008, Optics letters.

[55]  K. Petermann,et al.  Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm. , 2011, Optics letters.

[56]  Matthias Golling,et al.  Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.

[57]  Christian Kränkel,et al.  Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range , 2015 .

[58]  Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm , 2016 .

[59]  O. Hunter,et al.  Elastic Properties of Polycrystalline Thulium Oxide and Lutetium Oxide from 20° to 1000°C , 1970 .