Motion Estimation and Correction in Photoacoustic Tomographic Reconstruction

Motion, e.g., due to patient movement or improper device calibration, is inevitable in many imaging modalities such as photoacoustic tomography (PAT) by a rotating system and can lead to undesirable motion artifacts in image reconstructions, if ignored. In this paper, we establish a hybrid-type model for PAT that incorporates motion in the model. We first introduce an approximate continuous model and establish two uniqueness results for simple parameterized motion models. Then we formulate the discrete problem of simultaneous motion estimation and image reconstruction as a separable nonlinear least squares problem and describe an automatic approach to detect and eliminate motion artifacts during the reconstruction process. Numerical examples validate our methods.

[1]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[2]  Sun,et al.  Photoacoustic monopole radiation in one, two, and three dimensions. , 1991, Physical review letters.

[3]  Otmar Scherzer,et al.  Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[4]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[5]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[6]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[7]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[8]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[9]  Mark A. Anastasio,et al.  A Constrained Variable Projection Reconstruction Method for Photoacoustic Computed Tomography Without Accurate Knowledge of Transducer Responses , 2015, IEEE Transactions on Medical Imaging.

[10]  R. Kruger,et al.  Photoacoustic ultrasound (PAUS)--reconstruction tomography. , 1995, Medical physics.

[11]  Nicholas Ayache,et al.  3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field. , 2004, Physics in medicine and biology.

[12]  Simon Rit,et al.  Comparison of Analytic and Algebraic Methods for Motion-Compensated Cone-Beam CT Reconstruction of the Thorax , 2009, IEEE Transactions on Medical Imaging.

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Bernadette N. Hahn Efficient algorithms for linear dynamic inverse problems with known motion , 2014 .

[15]  V. Palamodov A uniform reconstruction formula in integral geometry , 2011, 1111.6514.

[16]  Eric Todd Quinto,et al.  The dependence of the generalized Radon transform on defining measures , 1980 .

[17]  Xu Xiao Photoacoustic imaging in biomedicine , 2008 .

[18]  I. Gel'fand,et al.  Differential forms and integral geometry , 1969 .

[19]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[20]  Bernadette N. Hahn,et al.  Reconstruction of dynamic objects with affine deformations in computerized tomography , 2013 .

[21]  Mark A. Anastasio,et al.  Application of inverse source concepts to photoacoustic tomography , 2007 .

[22]  Jed D. Pack,et al.  Dynamic computed tomography with known motion field , 2004, SPIE Medical Imaging.

[23]  Otmar Scherzer,et al.  A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT , 2009, IEEE Transactions on Medical Imaging.

[24]  Pierre Grangeat,et al.  Compensation of Some Time Dependent Deformations in Tomography , 2007, IEEE Transactions on Medical Imaging.

[25]  Markus Haltmeier,et al.  Universal Inversion Formulas for Recovering a Function from Spherical Means , 2012, SIAM J. Math. Anal..

[26]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[27]  Bernadette N. Hahn,et al.  Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization , 2015 .

[28]  Yuan Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry , 2002, IEEE Transactions on Medical Imaging.

[29]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[30]  Alexander Katsevich,et al.  Reconstruction Algorithms for a Class of Restricted Ray Transforms Without Added Singularities , 2016, 1603.07617.

[31]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[32]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[33]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[34]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[35]  James G. Nagy,et al.  Constrained numerical optimization methods for blind deconvolution , 2013, Numerical Algorithms.

[36]  Katsuyuki Taguchi,et al.  Motion Compensated Fan-Beam Reconstruction for Nonrigid Transformation , 2008, IEEE Transactions on Medical Imaging.

[37]  Victor Palamodov Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .

[38]  Bernadette N. Hahn,et al.  Detectable Singularities from Dynamic Radon Data , 2016, SIAM J. Imaging Sci..

[39]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[40]  O. Scherzer Handbook of mathematical methods in imaging , 2011 .

[41]  Alexander Katsevich,et al.  Local Tomography and the Motion Estimation Problem , 2011, SIAM J. Imaging Sci..

[42]  M Grass,et al.  Motion-compensated iterative cone-beam CT image reconstruction with adapted blobs as basis functions , 2008, Physics in medicine and biology.

[43]  James G. Nagy,et al.  An Efficient Iterative Approach for Large-Scale Separable Nonlinear Inverse Problems , 2009, SIAM J. Sci. Comput..

[44]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.

[45]  Tuan Vo-Dinh,et al.  Biomedical Photonics Handbook, 3 Volume Set , 2014 .

[46]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[47]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[48]  Hongkai Zhao,et al.  A New Numerical Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, 1101.3729.

[49]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[50]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[51]  Linh V. Nguyen A family of inversion formulas in thermoacoustic tomography , 2009, 0902.2579.

[52]  Richard Su,et al.  Whole-body three-dimensional optoacoustic tomography system for small animals. , 2009, Journal of biomedical optics.

[53]  J. Nagy,et al.  Numerical methods for coupled super-resolution , 2006 .

[54]  Frank Natterer,et al.  Photo-acoustic inversion in convex domains , 2012 .

[55]  Andrew Béla Frigyik,et al.  The X-Ray Transform for a Generic Family of Curves and Weights , 2007, math/0702065.

[56]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[57]  Pierre Grangeat,et al.  Theoretical framework for a dynamic cone-beam reconstruction algorithm based on a dynamic particle model. , 2002, Physics in medicine and biology.

[58]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[59]  Alexander Katsevich,et al.  An accurate approximate algorithm for motion compensation in two-dimensional tomography , 2010 .

[60]  Jin Zhang,et al.  Half-time image reconstruction in thermoacoustic tomography , 2005, IEEE Transactions on Medical Imaging.

[61]  Markus Haltmeier,et al.  Inversion of circular means and the wave equation on convex planar domains , 2012, Comput. Math. Appl..

[62]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[63]  Linda Kaufman,et al.  A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems , 1974 .

[64]  Axel Ruhe,et al.  Algorithms for separable nonlinear least squares problems , 1980 .

[65]  Andrew J. Homan,et al.  Injectivity and Stability for a Generic Class of Generalized Radon Transforms , 2016, The Journal of Geometric Analysis.

[66]  Dianne P. O'Leary,et al.  Variable projection for nonlinear least squares problems , 2012, Computational Optimization and Applications.

[67]  Eric Todd Quinto,et al.  Support theorems for real-analytic Radon transforms , 1987 .

[68]  Lihong V. Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography. , 2005 .

[69]  Otmar Scherzer,et al.  Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.

[70]  Peter Kuchment,et al.  Mathematics of Photoacoustic and Thermoacoustic Tomography , 2009, Handbook of Mathematical Methods in Imaging.

[71]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[72]  A. Tam Applications of photoacoustic sensing techniques , 1986 .

[73]  J. Nagy,et al.  A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .

[74]  L. Hörmander,et al.  Remarks on Holmgren's uniqueness theorem , 1993 .

[75]  Alexander Katsevich,et al.  Motion compensated local tomography , 2008 .