Thirty Years of Digital Libraries Research at the University of Padua: The User Side

For the 30th anniversary of the Information Management Systems (IMS) research group of the University of Padua, we report the main and more recent contributions of the group that focus on the users in the field of Digital Library (DL). In particular, we describe a dynamic and adaptive environment for user engagement with cultural heritage collections, the role of log analysis for studying the interaction between users and DL, and how to model user behaviour.

[1]  Henning Müller Medical (Visual) Information Retrieval , 2012, PROMISE Winter School.

[2]  Giorgio Maria Di Nunzio,et al.  Multilingual Log Analysis: LogCLEF , 2011, ECIR.

[3]  Timothy Baldwin,et al.  Understanding User Behavior in Job and Talent Search: An Initial Investigation , 2017, eCOM@SIGIR.

[4]  Nicola Ferro,et al.  Injecting user models and time into precision via Markov chains , 2014, SIGIR.

[5]  Giorgio Maria Di Nunzio,et al.  Analysing HTTP Logs of a European DL Initiative to Maximize Usage and Usability , 2007, ICADL.

[6]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[7]  Giorgio Maria Di Nunzio,et al.  Understanding user requirements and preferences for a digital library Web portal , 2010, International Journal on Digital Libraries.

[8]  Giorgio Maria Di Nunzio,et al.  Gathering and Mining Information from Web Log Files , 2007, DELOS.

[9]  Mark Levene,et al.  Search Engines: Information Retrieval in Practice , 2011, Comput. J..

[10]  Raffaele Perego,et al.  On Including the User Dynamic in Learning to Rank , 2017, SIGIR.

[11]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[12]  Alessandro Micarelli,et al.  User Profiles for Personalized Information Access , 2007, The Adaptive Web.

[13]  Vincent P. Wade,et al.  Cross-site personalization: assisting users in addressing information needs that span independently hosted websites , 2014, HT.

[14]  Giorgio Maria Di Nunzio,et al.  LogCLEF 2011 Multilingual Log File Analysis: Language Identification, Query Classification, and Success of a Query , 2011, CLEF.

[15]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[16]  Vincent P. Wade,et al.  An Adaptive Cross-Site User Modelling Platform for Cultural Heritage Websites , 2017, IRCDL.

[17]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[18]  Mark Levene,et al.  Personalisation of Web Search , 2003, ITWP.

[19]  Alistair Moffat,et al.  Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.

[20]  Giorgio Maria Di Nunzio,et al.  Web Log Mining : A Study of User Sessions , 2007 .

[21]  Giorgio Maria Di Nunzio,et al.  Evaluation of Digital Library Services Using Complementary Logs , 2009, UIIR@SIGIR.

[22]  Nicola Orio,et al.  User Needs for Enhanced Engagement with Cultural Heritage Collections , 2012, TPDL.

[23]  Anja van der Lans Enterprise Search and Retrieval (ESR): The Binding Factor , 2013 .

[24]  Allan Hanbury,et al.  Patent Retrieval , 2013, Found. Trends Inf. Retr..

[25]  Giorgio Maria Di Nunzio,et al.  Web log analysis: a review of a decade of studies about information acquisition, inspection and interpretation of user interaction , 2011, Data Mining and Knowledge Discovery.

[26]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[27]  Giorgio Maria Di Nunzio,et al.  LogCLEF: enabling research on multilingual log files , 2011, PMHR '11.

[28]  Giorgio Maria Di Nunzio,et al.  LogCLEF 2009: the CLEF 2009 Multilingual Logfile Analysis Track Overview , 2009, CLEF.

[29]  Nicola Orio,et al.  Guided Tours Across a Collection of Historical Digital Images , 2014, AIUCD '14.

[30]  Giorgio Maria Di Nunzio,et al.  i-TEL-u: A Query Suggestion Tool for Integrating Heterogeneous Contexts in a Digital Library , 2010, ECDL.