Mixture-based clustering for the ordered stereotype model
暂无分享,去创建一个
[1] Gérard Govaert,et al. An improvement of the NEC criterion for assessing the number of clusters in a mixture model , 1999, Pattern Recognit. Lett..
[2] Anil K. Jain,et al. Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Sang Uk Lee,et al. Integrated Position Estimation Using Aerial Image Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[4] George R. Franke,et al. Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research , 1986 .
[5] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[6] Ivy Liu,et al. Biclustering Models for Two-Mode Ordinal Data , 2016, Psychometrika.
[7] A. Agresti. Analysis of Ordinal Categorical Data , 1985 .
[8] Mohamed Nadif,et al. Co-clustering for Binary and Categorical Data with Maximum Modularity , 2011, 2011 IEEE 11th International Conference on Data Mining.
[9] Oliver Kuss. On the estimation of the stereotype regression model , 2006, Comput. Stat. Data Anal..
[10] N. Gotelli,et al. NULL MODELS IN ECOLOGY , 1996 .
[11] P. McCullagh. Regression Models for Ordinal Data , 1980 .
[12] L. A. Goodman. Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories , 1979 .
[13] Ivy Liu. The Analysis of Ordered Categorical Data : An Overview and a Survey of Recent Developments , 2005 .
[14] R. Brant. Assessing proportionality in the proportional odds model for ordinal logistic regression. , 1990, Biometrics.
[15] Gérard Govaert,et al. An EM algorithm for the block mixture model , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[16] Wayne S. DeSarbo,et al. A hierarchical bayesian procedure for two-mode cluster analysis , 2004 .
[17] Stanley P. Azen,et al. Computational Statistics and Data Analysis (CSDA) , 2006 .
[18] C. Hennig,et al. How to find an appropriate clustering for mixed‐type variables with application to socio‐economic stratification , 2013 .
[19] G. Govaert,et al. Latent Block Model for Contingency Table , 2010 .
[20] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[21] Clifford M. Hurvich,et al. Regression and time series model selection in small samples , 1989 .
[22] Daniel Ståhl,et al. Model‐based cluster analysis , 2012 .
[23] Richard Arnold,et al. Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection , 2014, Comput. Stat. Data Anal..
[24] Robert H. Shumway,et al. The model selection criterion AICu , 1997 .
[25] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[26] Irini Moustaki,et al. A Latent Variable Model for Ordinal Variables , 2000 .
[27] A. Agresti,et al. The analysis of ordered categorical data: An overview and a survey of recent developments , 2005 .
[28] Genshiro Kitagawa,et al. Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach : Volume 2 Multivariate Statistical Modeling , 1994 .
[29] David J. Hand,et al. Mixture Models: Inference and Applications to Clustering , 1989 .
[30] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[31] Maurizio Vichi,et al. Two-mode multi-partitioning , 2008, Comput. Stat. Data Anal..
[32] B. McCune,et al. Analysis of Ecological Communities , 2002 .
[33] Jeroen K. Vermunt,et al. The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .
[34] Richard Breen,et al. Mixture Models for Ordinal Data , 2010 .
[35] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[36] S S Stevens,et al. On the Theory of Scales of Measurement. , 1946, Science.
[37] 김경민,et al. Finite mixture models and model-based clustering , 2017 .
[38] J. Chimka. Categorical Data Analysis, Second Edition , 2003 .
[39] W. D. Ray,et al. 8. Applied Multivariate Data Analysis: Vol. 2, Categorical and Multivariate Methods , 1993 .
[40] Vera Pawlowsky-Glahn,et al. Statistical Modeling , 2007, Encyclopedia of Social Network Analysis and Mining.
[41] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .
[42] Philip S. Yu,et al. Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.
[43] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[44] Gérard Govaert,et al. Estimation and selection for the latent block model on categorical data , 2015, Stat. Comput..
[45] Gérard Govaert,et al. Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[46] Margarida G. M. S. Cardoso,et al. Mixture-model cluster analysis using information theoretical criteria , 2007, Intell. Data Anal..
[47] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[48] G. McLachlan. On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .
[49] Vichi Maurizio. Double k-means Clustering for Simultaneous Classification of Objects and Variables , 2001 .
[50] E. Snell,et al. A Scaling Procedure for Ordered Categorical Data , 1964 .
[51] Brian Everitt,et al. Cluster analysis , 1974 .
[52] L. V. Jones,et al. The measurement and prediction of judgment and choice. , 1970 .
[53] Jaeil Ahn,et al. Bayesian inference for the stereotype regression model: Application to a case-control study of prostate cancer. , 2009, Statistics in medicine.
[54] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[55] J. Anderson. Regression and Ordered Categorical Variables , 1984 .
[56] Marco Alfò,et al. Advances in Mixture Models , 2007, Comput. Stat. Data Anal..
[57] A. Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[58] J. Reid. Experimental Design and Data Analysis for Biologists , 2003 .
[59] B. Manly. Multivariate Statistical Methods : A Primer , 1986 .
[60] David R. Anderson,et al. Model selection and multimodel inference : a practical information-theoretic approach , 2003 .
[61] Damien McParland,et al. Clustering Ordinal Data via Latent Variable Models , 2013, Algorithms from and for Nature and Life.
[62] Yu Hayakawa,et al. Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension , 2010, Biometrics.
[63] T. Robbins,et al. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach , 2005, Journal of Neurology, Neurosurgery & Psychiatry.
[64] Robert H. Whittaker,et al. Vegetation of the Great Smoky Mountains , 1956 .
[65] S. Pledger. Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures , 2000, Biometrics.
[66] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[67] S Greenland,et al. Alternative models for ordinal logistic regression. , 1994, Statistics in medicine.
[68] Philip S. Yu,et al. WF-MSB: A weighted fuzzy-based biclustering method for gene expression data , 2011, Int. J. Data Min. Bioinform..
[69] A Agresti,et al. Quasi-symmetric latent class models, with application to rater agreement. , 1993, Biometrics.
[70] Maurizio Vichi,et al. Studies in Classification Data Analysis and knowledge Organization , 2011 .
[71] S. C. Johnson. Hierarchical clustering schemes , 1967, Psychometrika.
[72] Jaeil Ahn,et al. Fitting stratified proportional odds models by amalgamating conditional likelihoods. , 2008, Statistics in medicine.
[73] Rebecca A Betensky,et al. A penalized latent class model for ordinal data. , 2007, Biostatistics.