Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations

The size effect in the oxidation of aluminum nanoparticles (Al-NPs) has been observed experimentally; however, the mechano-chemistry and the atomistic mechanism of the oxidation dynamics remain elusive. We have performed multimillion atom reactive molecular dynamics simulations to investigate the oxidation dynamics of Al-NPs (diameters, D = 26, 36, and 46 nm) with the same shell thickness (3 nm). Analysis of alumina shell structure reveals that the shell of Al-NPs does not break or shatter, but only deforms during the oxidation process. The deformation depends slightly on the size of Al-NP. This reaction from the oxidation heats the Al-NP to a temperature of T > 5000 K. Ejection of Al atoms from shell starts earlier in small Al-NPs—at t0 = 0.18, 0.28 and 0.42 ns for D = 26, 36 and 46 nm, when they all have the same shell temperature of 2900 K. As the oxidation dynamics proceeds, the total system temperature (including the environmental oxygen) increases monotonically; however, the time derivative of the t...

[1]  A. Nakano,et al.  Collective oxidation behavior of aluminum nanoparticle aggregate , 2013 .

[2]  C. Crouse,et al.  Comparison of post-detonation combustion in explosives incorporating aluminum nanoparticles: Influence of the passivation layer , 2013 .

[3]  M. Pantoya,et al.  Effect of oxide shell growth on nano-aluminum thermite propagation rates , 2012 .

[4]  D. Dlott,et al.  Comparing Boron and Aluminum Nanoparticle Combustion in Teflon Using Ultrafast Emission Spectroscopy , 2012 .

[5]  M. Zachariah,et al.  Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles , 2012 .

[6]  E. Dreizin,et al.  Reactions leading to ignition in fully dense nanocomposite Al-oxide systems , 2011 .

[7]  E. Guliants,et al.  Size-Dependent Nanoparticle Reaction Enthalpy: Oxidation of Aluminum Nanoparticles , 2011 .

[8]  A. Afjeh,et al.  Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol) , 2011, Nanoscale research letters.

[9]  L. Qiao,et al.  Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles , 2011 .

[10]  A. Nakano,et al.  Effects of oxide-shell structures on the dynamics of oxidation of Al nanoparticles , 2010 .

[11]  Patrick Lynch,et al.  Combustion Measurements of Fuel‐Rich Aluminum and Molybdenum Oxide Nano‐Composite Mixtures , 2010 .

[12]  V. Yang,et al.  Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting , 2010 .

[13]  Jun Deng,et al.  A comparison study of the agglomeration mechanism of nano- and micrometer aluminum particles , 2010 .

[14]  A. Perron,et al.  Oxidation of nanocrystalline aluminum by variable charge molecular dynamics , 2010 .

[15]  Rajiv K. Kalia,et al.  Fast reaction mechanism of a core(Al)-shell (Al2O3) nanoparticle in oxygen , 2009 .

[16]  R. J. Jouet,et al.  Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies , 2009 .

[17]  Costas Fotakis,et al.  Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. , 2009, Optics express.

[18]  A. Morgan,et al.  Heat release measurements on micron and nano-scale aluminum powders , 2009 .

[19]  K. V. Anand,et al.  Production, Characterization, and Combustion of Nanoaluminum in Composite Solid Propellants , 2009 .

[20]  V. Levitas Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism , 2009 .

[21]  D. Frost,et al.  Preignition characteristics of nano- and micrometer-scale aluminum particles in Al–CO2 oxidation systems , 2009 .

[22]  Vigor Yang,et al.  Effect of particle size on combustion of aluminum particle dust in air , 2009 .

[23]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[24]  A. Nakano,et al.  Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina , 2008 .

[25]  Weiqiang Wang Thermal properties of silicon carbide and combustion mechanisms of aluminum nanoparticle , 2008 .

[26]  R. D. Dick,et al.  Equation of State of Aluminum-Iron Oxide-Epoxy Composite , 2007 .

[27]  J. H. Wu,et al.  Shock-induced thermal behavior of aluminum nanoparticles in propylene oxide , 2007 .

[28]  S. Son,et al.  Combustion Behaviors Resulting from Bimodal Aluminum Size Distributions in Thermites , 2007 .

[29]  Yu. V. Frolov,et al.  Nanosized components of energetic systems: Structure, thermal behavior, and combustion , 2007 .

[30]  R. Yetter,et al.  Combustion of bimodal nano/micron-sized aluminum particle dust in air , 2007 .

[31]  S. Son,et al.  Melt dispersion mechanism for fast reaction of nanothermites , 2006 .

[32]  V. A. Babuk,et al.  Burning of Nano-Aluminized Composite Rocket Propellants , 2005 .

[33]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[34]  A. Miziolek,et al.  Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases. , 2005, Applied optics.

[35]  Rajiv K. Kalia,et al.  Oxidation of aluminum nanoclusters , 2005 .

[36]  Shufeng Wang,et al.  Dynamical Effects of the Oxide Layer in Aluminum Nanoenergetic Materials , 2005 .

[37]  M. Zachariah,et al.  Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. , 2005, The journal of physical chemistry. B.

[38]  A. Nakano,et al.  Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals , 2005 .

[39]  E. Dreizin,et al.  Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders , 2005 .

[40]  J. Mintmire,et al.  Molecular dynamics simulations of the oxidation of aluminum nanoparticles. , 2005, The journal of physical chemistry. B.

[41]  Geun-Hie Rim,et al.  The mechanism of combustion of superfine aluminum powders , 2003 .

[42]  Shufeng Wang,et al.  Fast spectroscopy of energy release in nanometric explosives , 2003 .

[43]  Gonzalo Gutiérrez,et al.  Molecular dynamics study of structural properties of amorphous Al 2 O 3 , 2002 .

[44]  G. Gutiérrez,et al.  Theoretical structure determination of gamma-Al2O3 , 2001 .

[45]  J. Mintmire,et al.  Efficient parallel algorithms for molecular dynamics simulations using variable charge transfer electrostatic potentials , 2000 .

[46]  T. Russell,et al.  ROLE OF AL-O2 CHEMISTRY IN THE LASER-INDUCED VAPORIZATION OF AL FILMS IN AIR , 1999 .

[47]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[48]  E. Dreizin Experimental study of stages in aluminium particle combustion in air , 1996 .

[49]  A. Yamamoto,et al.  Anodic Dissolution of N‐Type Gallium Arsenide under Illumination , 1975 .