CONFECT: Conformations from an Expert Collection of Torsion Patterns

The generation of sets of low‐energy conformations for a given molecule is a central task in drug design. Herein we present a new conformation generator called CONFECT that builds on our previously published library of torsion patterns. Conformations are generated as well as ranked by means of normalized frequency distributions derived from the Cambridge Structural Database (CSD). Following an incremental construction approach, conformations are selected from a systematic enumeration within energetic boundaries. The new tool is benchmarked in several different ways, indicating that it allows the efficient generation of high‐quality conformation ensembles. These ensembles are smaller than those produced by state‐of‐the‐art tools, yet they effectively cover conformational space.

[1]  Jacques Chomilier,et al.  Frog: a FRee Online druG 3D conformation generator , 2007, Nucleic Acids Res..

[2]  David Weininger,et al.  SMILES. 2. Algorithm for generation of unique SMILES notation , 1989, J. Chem. Inf. Comput. Sci..

[3]  Matthias Rarey,et al.  Systematic benchmark of substructure search in molecular graphs - From Ullmann to VF2 , 2012, Journal of Cheminformatics.

[4]  Matthias Rarey,et al.  Torsion angle preferences in druglike chemical space: a comprehensive guide. , 2013, Journal of medicinal chemistry.

[5]  Jiabo Li,et al.  CAESAR: A New Conformer Generation Algorithm Based on Recursive Buildup and Local Rotational Symmetry Consideration , 2007, J. Chem. Inf. Model..

[6]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[7]  Mark S. Johnson,et al.  Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm , 2007, J. Chem. Inf. Model..

[8]  Woody Sherman,et al.  ConfGen: A Conformational Search Method for Efficient Generation of Bioactive Conformers , 2010, J. Chem. Inf. Model..

[9]  Matthias Rarey,et al.  Unique Ring Families: A Chemically Meaningful Description of Molecular Ring Topologies , 2012, J. Chem. Inf. Model..

[10]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[11]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[12]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[13]  Christof H. Schwab,et al.  Conformations and 3D pharmacophore searching. , 2010, Drug discovery today. Technologies.

[14]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[15]  Gerhard Klebe,et al.  Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures , 1994, J. Chem. Inf. Comput. Sci..

[16]  Matthias Rarey,et al.  Fast force field‐based optimization of protein–ligand complexes with graphics processor , 2012, J. Comput. Chem..

[17]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[18]  Matthias Rarey,et al.  TFD: Torsion Fingerprints As a New Measure To Compare Small Molecule Conformations , 2012, J. Chem. Inf. Model..

[19]  Charlotte M. Deane,et al.  Freely Available Conformer Generation Methods: How Good Are They? , 2012, J. Chem. Inf. Model..

[20]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[21]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[22]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[23]  Matthias Rarey,et al.  Conformational Sampling for Large-Scale Virtual Screening: Accuracy versus Ensemble Size , 2009, J. Chem. Inf. Model..

[24]  Martin Stahl,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[25]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[26]  Tjelvar S. G. Olsson,et al.  The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures , 2012, Journal of Computer-Aided Molecular Design.

[27]  J. Gasteiger,et al.  Automatic generation of 3D-atomic coordinates for organic molecules , 1990 .