A Guide to Support Vector Machines

[1]  Don R. Hush,et al.  Polynomial-Time Decomposition Algorithms for Support Vector Machines , 2003, Machine Learning.

[2]  Chih-Jen Lin,et al.  On the convergence of the decomposition method for support vector machines , 2001, IEEE Trans. Neural Networks.

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[5]  Gérard Dreyfus,et al.  Single-layer learning revisited: a stepwise procedure for building and training a neural network , 1989, NATO Neurocomputing.

[6]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[7]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[8]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[9]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[10]  Chih-Jen Lin,et al.  IJCNN 2001 challenge: generalization ability and text decoding , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[11]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[12]  S. Sathiya Keerthi,et al.  Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.

[13]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Chih-Jen Lin,et al.  The analysis of decomposition methods for support vector machines , 2000, IEEE Trans. Neural Networks Learn. Syst..

[17]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[18]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[19]  Chih-Jen Lin,et al.  A formal analysis of stopping criteria of decomposition methods for support vector machines , 2002, IEEE Trans. Neural Networks.

[20]  Chih-Jen Lin,et al.  Formulations of Support Vector Machines: A Note from an Optimization Point of View , 2001, Neural Computation.

[21]  Ke Wang,et al.  PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria , 2003, Nucleic Acids Res..

[22]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[23]  S. Sathiya Keerthi,et al.  Convergence of a Generalized SMO Algorithm for SVM Classifier Design , 2002, Machine Learning.

[24]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[25]  Chih-Jen Lin,et al.  Asymptotic convergence of an SMO algorithm without any assumptions , 2002, IEEE Trans. Neural Networks.