A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions

The purpose of this study is mainly directed towards present of viewpoints on critical and commentary analysis on blood rheology, blood viscosity models, and physiological flow conditions. Understanding these basics is fundamental to meet the need for a sufficient and reliable CFD model of blood. Most of the used viscosity models on this manner have determined from parameter fitting on experimental viscosity data. Availability of experimental data from literature to define viscosity models of CFD analysis should be accurately chosen and treated in order to avoid any errors. Several basic gaps that limit the CFD model results are identified and given opportunities for future research.

[1]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[2]  A. Copley,et al.  Effects of hematocrit on thixotropic properties of human blood. , 1987, Biorheology.

[3]  A. Popel,et al.  A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. , 2001, Biorheology.

[4]  A L Copley,et al.  Thixotropic properties of whole blood from healthy human subjects. , 1987, Biorheology.

[5]  Z B Kuang,et al.  Study on blood constitutive parameters in different blood constitutive equations. , 2000, Journal of biomechanics.

[6]  Mehmet Yasar Gundogdu,et al.  Present State of Art on Pulsatile Flow Theory. Part 2. Turbulent Flow Regime. , 1999 .

[7]  D. Quemada Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows , 1978 .

[8]  D E Brooks,et al.  A comparison of rheological constitutive functions for whole human blood. , 1980, Biorheology.

[9]  M. Gundogdu,et al.  Present State of Art on Pulsatile Flow Theory : Part 1:Laminar and Transitional Flow Regimes , 1999 .

[10]  K. Vafai,et al.  An Investigation of Stokes' Second Problem for Non-Newtonian Fluids , 2005 .

[11]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[12]  Panagiotis Neofytou,et al.  Flow effects of blood constitutive equations in 3D models of vascular anomalies , 2006 .

[13]  R. Pal Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. , 2003, Journal of biomechanics.

[14]  J. Buchanan,et al.  Rheological effects on pulsatile hemodynamics in a stenosed tube , 2000 .

[15]  E. Merrill,et al.  Non‐Newtonian Rheology of Human Blood ‐ Effect of Fibrinogen Deduced by “Subtraction” , 1963, Circulation research.

[16]  Dimos Poulikakos,et al.  Computational simulation of a non-newtonian model of the blood separation process. , 2005, Artificial organs.

[17]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[18]  G. Thurston,et al.  Effects of flow geometry on blood viscoelasticity. , 2006, Biorheology.

[19]  M Intaglietta,et al.  Rheological effects of red blood cell aggregation in the venous network: a review of recent studies. , 2001, Biorheology.

[20]  Yaling Liu,et al.  Rheology of red blood cell aggregation by computer simulation , 2006, J. Comput. Phys..

[21]  V. Vand Viscosity of solutions and suspensions; theory. , 1948, The Journal of physical and colloid chemistry.

[22]  Young I. Cho,et al.  A new method for blood viscosity measurement , 2000 .

[23]  P. Coussot Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment , 2005 .

[24]  A. Pries,et al.  Corrections and Retraction , 2004 .

[25]  Shu Chien,et al.  Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity , 1970, Science.

[26]  H. S. Lew Formulation of statistical equation of motion of blood. , 1969, Biophysical journal.

[27]  M. Dupin,et al.  Modeling the flow of dense suspensions of deformable particles in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  G. Thurston,et al.  Viscoelasticity of human blood. , 1972, Biophysical journal.

[29]  Patrick Snabre,et al.  II. Rheology of Weakly Flocculated Suspensions of Viscoelastic Particles , 1996 .

[30]  L. Schramm Emulsions, Foams, and Suspensions: Fundamentals and Applications , 2005 .

[31]  D. D. Joye Shear rate and viscosity corrections for a Casson fluid in cylindrical (Couette) geometries. , 2003, Journal of colloid and interface science.

[32]  K. Rajagopal,et al.  The flow of blood in tubes: theory and experiment , 1998 .

[33]  Aleksander S Popel,et al.  An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows , 2007, Physical biology.

[34]  E. Hatschek Die Viskosität der Dispersoide , 1910 .

[35]  P. Blackshear,et al.  Evaluation of the yield stress of normal blood as a function of fibrinogen concentration and hematocrit. , 1989, Microvascular research.

[36]  T. Kitano,et al.  An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers , 1981 .

[37]  Howard A. Barnes,et al.  Measuring the viscosity of large-particle (and flocculated) suspensions — a note on the necessary gap size of rotational viscometers , 2000 .

[38]  R. Roscoe The viscosity of suspensions of rigid spheres , 1952 .

[39]  Kiyoshi Toda,et al.  Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles. , 2006, Journal of bioscience and bioengineering.

[40]  David A. Steinman,et al.  Flow Imaging and Computing: Large Artery Hemodynamics , 2005, Annals of Biomedical Engineering.

[41]  David G. Thomas Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles , 1965 .

[42]  G. Broughton,et al.  THE VISCOSITY OF OIL-WATER EMULSIONS1 , 1937 .

[43]  M. Anand,et al.  A SHEAR-THINNING VISCOELASTIC FLUID MODEL FOR DESCRIBING THE FLOW OF BLOOD , 2004 .

[44]  In Seok Kang,et al.  A Microscopic Study on the Rheological Properties of Human Blood , 1994 .

[45]  E. Richardson Über die Viskosität von Emulsionen , 1933 .

[46]  M. Heinkenschloss,et al.  Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects , 2005, Computer methods in biomechanics and biomedical engineering.

[47]  T. Crowley,et al.  Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. , 2005, Lab on a chip.

[48]  Aleksander S Popel,et al.  Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. , 2008, Journal of biomechanics.

[49]  Xi-yun Lu,et al.  Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. , 2006, Journal of biomechanics.

[50]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[51]  H Kiesewetter,et al.  Basic phenomena of red blood cell rouleaux formation. , 1999, Biorheology.

[52]  R. Pal,et al.  Viscosity/Concentration Relationships for Emulsions , 1989 .

[53]  C. R. Wildemuth,et al.  Viscosity of suspensions modeled with a shear-dependent maximum packing fraction , 1984 .

[54]  O. Baskurt,et al.  Hemorheology and hemodynamics: Dove andare? , 2006, Clinical hemorheology and microcirculation.

[55]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[56]  G. Thurston,et al.  Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood. , 2004, Clinical hemorheology and microcirculation.

[57]  D. Steinman,et al.  Simulation of non-Newtonian blood flow in an end-to-side anastomosis. , 1994, Biorheology.

[58]  L. Dintenfass Internal Viscosity of the Red Cell and a Blood Viscosity Equation , 1968, Nature.

[59]  M. Mooney,et al.  The viscosity of a concentrated suspension of spherical particles , 1951 .

[60]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[61]  J. Sibree The viscosity of emulsions.—Part I , 1930 .

[62]  Z. Kuang,et al.  A study on the constitutive equation of blood. , 1992, Journal of biomechanics.

[63]  M. Heinkenschloss,et al.  Shape optimization in steady blood flow: A numerical study of non-Newtonian effects , 2005, Computer methods in biomechanics and biomedical engineering.

[64]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .

[65]  C. Suárez,et al.  The Effect of pH and Temperature on the Rheological Behavior of Dulce De Leche, A Typical Dairy Argentine Product , 1991 .

[66]  C. Kleinstreuera,et al.  Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta , 2003 .

[67]  H. Barnes,et al.  An introduction to rheology , 1989 .

[68]  V. Vand Viscosity of solutions and suspensions; theoretical interpretation of viscosity of sucrose solutions. , 1948, The Journal of physical and colloid chemistry.

[69]  F. N. van de Vosse,et al.  Finite-element-based computational methods for cardiovascular fluid-structure interaction , 2003 .

[70]  G. Thurston,et al.  Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. , 1979, Biorheology.

[71]  S Chien,et al.  Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. , 1970, The American journal of physiology.

[72]  C. Leondes Biomechanical Systems: Techniques and Applications, Volume IV: Biofluid Methods in Vascular and Pulmonary Systems , 2000 .

[73]  A. Zydney,et al.  A constitutive equation for the viscosity of stored red cell suspensions : effect of hematocrit, shear rate, and suspending phase , 1991 .

[74]  Ghassan S. Kassab,et al.  Computer Modeling of Red Blood Cell Rheology in the Microcirculation: A Brief Overview , 2005, Annals of Biomedical Engineering.

[75]  Howard A. Barnes,et al.  A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure , 1996 .

[76]  David A. Steinman,et al.  Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries , 2002, Annals of Biomedical Engineering.

[77]  P. E. Pierce,et al.  Application of ree-eyring generalized flow theory to suspensions of spherical particles , 1956 .

[78]  Prosenjit Bagchi,et al.  Mesoscale simulation of blood flow in small vessels. , 2007, Biophysical journal.

[79]  James Freeman Steffe,et al.  Rheological Methods in Food Process Engineering , 1992 .

[80]  R. Wells,et al.  Fluid Drop-Like Transition of Erythrocytes under Shear , 1969, Science.

[81]  J. S. Chong,et al.  Rheology of concentrated suspensions , 1971 .

[82]  Y. Cho,et al.  Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. , 1991, Biorheology.

[83]  David A Steinman,et al.  Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis. , 2004, Current drug targets. Cardiovascular & haematological disorders.

[84]  M. Walsh,et al.  Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. , 2006, Medical engineering & physics.

[85]  J. S. V. Duijneveldt Colloid science: Principles, methods and applications , 2005 .

[86]  K. Rajagopal,et al.  A thermodynamic frame work for rate type fluid models , 2000 .

[87]  J. Piau,et al.  Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects. , 1998, Biorheology.

[88]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[89]  Robert G. Owens,et al.  A new microstructure-based constitutive model for human blood , 2006 .

[90]  van de Fn Frans Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube , 1999 .

[91]  Alvaro Valencia,et al.  Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm , 2006 .

[92]  H J Meiselman,et al.  Cellular determinants of low-shear blood viscosity. , 1997, Biorheology.

[93]  Jiyuan Tu,et al.  Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction , 2007 .

[94]  D. Steinman,et al.  On the relative importance of rheology for image-based CFD models of the carotid bifurcation. , 2007, Journal of biomechanical engineering.

[95]  M W Rampling,et al.  Influence of cell-specific factors on red blood cell aggregation. , 2004, Biorheology.

[96]  I. Krieger,et al.  Rheology of monodisperse latices , 1972 .

[97]  S. Cowin,et al.  Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. , 1994 .

[98]  H. Eilers Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration , 1941 .

[99]  A. Libretti,et al.  Microcirculation and Hemorheology in NIDDM Patients , 1990, Angiology.

[100]  H. Rojas Numerical implementation of viscoelastic blood flow in a simplified arterial geometry. , 2007, Medical engineering & physics.

[101]  Barbara M. Johnston,et al.  Non-Newtonian blood flow in human right coronary arteries: steady state simulations. , 2004, Journal of biomechanics.

[102]  F N van de Vosse,et al.  Wall shear stress in backward-facing step flow of a red blood cell suspension. , 1998, Biorheology.

[103]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[104]  M. O. Carpinlioglu,et al.  A critical review on pulsatile pipe flow studies directing towards future research topics , 2001 .

[105]  Aleksander S Popel,et al.  Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. , 2005, Journal of biomechanical engineering.

[106]  Catherine Picart,et al.  Human blood shear yield stress and its hematocrit dependence , 1998 .