Chaotic ranges of a unified chaotic system and its chaos for five periodic switch cases

Abstract In this paper, a unified chaotic system is studied in detail. Non-chaotic ranges within α ∈ [0, 1] are found, where α is the constant parameter of the system. Chaotic range longer than α ∈ [0, 1], α ∈ [−0.015, 1.152], is discovered, which is the extended chaotic range of unified chaotic system. Next, its chaos behaviors for five continuous periodic switch cases, k sin2 ωT, m sin ωt, 0 ∼ 1 triangular wave, −1 ∼ 1 triangular wave, and 0 ∼ 1 sawtooth wave, are presented.

[1]  Zheng-Ming Ge,et al.  Chaos synchronization and chaos anticontrol of a suspended track with moving loads , 2004 .

[2]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[3]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[4]  Yen-Sheng Chen,et al.  Chaos anticontrol and synchronization of three time scales brushless DC motor system , 2004 .

[5]  Lu Jun-An,et al.  Control of a unified chaotic system , 2005 .

[6]  Liu Min,et al.  Parameter Identification and Tracking of a Unified System , 2002 .

[7]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[8]  E. M. Shahverdiev,et al.  Parameter mismatches, variable delay times and synchronization in time-delayed systems , 2005 .

[9]  Xiaoqun Wu,et al.  Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems , 2005 .

[10]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[11]  Zheng-Ming Ge,et al.  Chaos synchronization and parameter identification for loudspeaker systems , 2004 .

[12]  Yen-Sheng Chen,et al.  Synchronization of unidirectional coupled chaotic systems via partial stability , 2004 .

[13]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[14]  Zheng-Ming Ge,et al.  Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay , 2005 .

[15]  TaoChao-Hai,et al.  Control of a unified chaotic system , 2003 .

[16]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[17]  Wei Xing Zheng,et al.  Global chaos synchronization with channel time-delay , 2004 .

[18]  Ju H. Park Stability criterion for synchronization of linearly coupled unified chaotic systems , 2005 .

[19]  Zheng-Ming Ge,et al.  Chaos synchronization and parameter identification of three time scales brushless DC motor system , 2005 .

[20]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[21]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[22]  吕金虎,et al.  Parameter Identification and Tracking of a Unified System , 2002 .

[23]  Ljupco Kocarev,et al.  Generalized synchronization in chaotic systems , 1995, Optics East.

[24]  Jitao Sun,et al.  Global synchronization criteria with channel time-delay for chaotic time-delay system , 2004 .

[25]  Z. Ge,et al.  Phase synchronization of coupled chaotic multiple time scales systems , 2004 .

[26]  Wu Xiaoqun,et al.  A unified chaotic system with continuous periodic switch , 2004 .

[27]  S. S. Yang,et al.  Generalized Synchronization in Chaotic Systems , 1998 .

[28]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[29]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[30]  Guanrong Chen,et al.  Some observer-based criteria for discrete-time generalized chaos synchronization , 2002 .

[31]  Chunde Yang,et al.  Speed feedback control of chaotic system , 2004 .

[32]  Zheng-Ming Ge,et al.  Chaos synchronization and parameters identification of single time scale brushless DC motors , 2004 .

[33]  A. Sukiennicki,et al.  Generalizations of the concept of marginal synchronization of chaos , 2000 .

[34]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[35]  Zheng-Ming Ge,et al.  Anti-control of chaos of two-degrees-of-freedom loudspeaker system and chaos synchronization of different order systems , 2004 .