Generalized conjugate gradient squared
暂无分享,去创建一个
[1] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[2] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[3] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[4] I. Gustafsson. A class of first order factorization methods , 1978 .
[5] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[6] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[7] H. Keller,et al. Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems , 1985 .
[8] Wha Wil Schilders,et al. Semiconductor device modelling from the numerical point of view , 1987 .
[9] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[10] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[11] A. Van. SOME OBSERVATIONS ON THE CONVERGENCE BEHAVIOR OF GMRES(II) , 1990 .
[12] Wolfgang Fichtner,et al. PILS: an iterative linear solver package for ill-conditioned systems , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).
[13] Ware Myers. Supercomputing 91 , 1992 .
[14] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[15] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[16] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[17] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[18] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[19] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[20] Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .
[21] Tony F. Chan,et al. A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..
[22] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[23] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[24] Arno Liegmann. Efficient solution of large sparse linear systems , 1995 .