Merocyanine/C60 Planar Heterojunction Solar Cells: Effect of Dye Orientation on Exciton Dissociation and Solar Cell Performance

In this study the charge dissociation at the donor/acceptor heterointerface of thermally evaporated planar heterojunction merocyanine/C60 organic solar cells is investigated. Deposition of the donor material on a heated substrate as well as post‐annealing of the complete devices at temperatures above the glass transition temperature of the donor material results in a twofold increase of the fill factor. An analytical model employing an electric‐field‐dependent exciton dissociation mechanism reveals that geminate recombination is limiting the performance of as‐deposited cells. Fourier‐transform infrared ellipsometry shows that, at temperatures above the glass transition temperature of the donor material, the orientation of the dye molecules in the donor films undergoes changes upon annealing. Based on this finding, the influence of the dye molecules’ orientations on the charge‐transfer state energies is calculated by quantum mechanical/molecular mechanics methods. The results of these detailed studies provide new insight into the exciton dissociation process in organic photovoltaic devices, and thus valuable guidelines for designing new donor materials.

[1]  D. Hertel,et al.  Simple, Highly Efficient Vacuum‐Processed Bulk Heterojunction Solar Cells Based on Merocyanine Dyes , 2011 .

[2]  J. Bisquert,et al.  Assessing Possibilities and Limits for Solar Cells , 2011 .

[3]  Yihong Chen,et al.  A new donor-acceptor molecule with uniaxial anisotropy for efficient vacuum-deposited organic solar cells. , 2011, Chemical communications.

[4]  C. Leung,et al.  Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells , 2011 .

[5]  Daniel Moses,et al.  Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset , 2011, Advanced materials.

[6]  Kai Sun,et al.  Solvent‐Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells , 2011 .

[7]  M. Weil,et al.  Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells , 2011 .

[8]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[9]  K. Leo,et al.  Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells , 2011 .

[10]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[11]  Norbert Koch,et al.  Design of Organic Semiconductors from Molecular Electrostatics , 2011 .

[12]  J. Brédas,et al.  A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells , 2011 .

[13]  N. Koch,et al.  High Fill Factor and Open Circuit Voltage in Organic Photovoltaic Cells with Diindenoperylene as Donor Material , 2010 .

[14]  Cherno Jaye,et al.  Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend , 2010 .

[15]  D. Hertel,et al.  Direct Comparison of Highly Efficient Solution‐ and Vacuum‐Processed Organic Solar Cells Based on Merocyanine Dyes , 2010, Advanced materials.

[16]  Richard H. Friend,et al.  Direct Measurement of Electric Field‐Assisted Charge Separation in Polymer:Fullerene Photovoltaic Diodes , 2010, Advanced materials.

[17]  K. Meerholz,et al.  Systems chemistry approach in organic photovoltaics. , 2010, Chemistry.

[18]  Marlus Koehler,et al.  Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: A molecular study using density functional theory calculations , 2010 .

[19]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[20]  K. Ho,et al.  Modulation of Donor-Acceptor Interface through Thermal Treatment for Efficient Bilayer Organic Solar Cells , 2010 .

[21]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[22]  A. Kahn,et al.  P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide , 2009 .

[23]  A. Hagfeldt,et al.  Efficient near infrared D-pi-A sensitizers with lateral anchoring group for dye-sensitized solar cells. , 2009, Chemical communications.

[24]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[25]  Y. Ooyama,et al.  Photovoltaic performance of dye-sensitized solar cells based on a series of new-type donor–acceptor π-conjugated sensitizer, benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes , 2009 .

[26]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[27]  T. Nishi,et al.  Determination of electron affinity of electron accepting molecules , 2009 .

[28]  Ryan D. Pensack,et al.  Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials. , 2009, Physical chemistry chemical physics : PCCP.

[29]  K. Meerholz,et al.  Bulk heterojunction organic solar cells based on merocyanine colorants. , 2008, Chemical communications.

[30]  Martin Pfeiffer,et al.  Origin of open circuit voltage in planar and bulk heterojunction organic thin-film photovoltaics depending on doped transport layers , 2008 .

[31]  Stefan C J Meskers,et al.  Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. , 2008, Journal of the American Chemical Society.

[32]  P. Peumans,et al.  Control of Electric Field Strength and Orientation at the Donor–Acceptor Interface in Organic Solar Cells , 2008 .

[33]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[34]  N. Armstrong,et al.  Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance , 2008 .

[35]  K. Leo,et al.  Organic Thin‐Film Photovoltaic Cells Based on Oligothiophenes with Reduced Bandgap , 2007 .

[36]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  K. Kanai,et al.  Oxygen effect on the interfacial electronic structure of C60 film studied by ultraviolet photoelectron spectroscopy , 2007 .

[38]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[39]  Martin Pfeiffer,et al.  Efficient Vacuum‐Deposited Organic Solar Cells Based on a New Low‐Bandgap Oligothiophene and Fullerene C60 , 2006 .

[40]  S. T. Lee,et al.  Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices , 2006 .

[41]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[42]  Stephen R. Forrest,et al.  Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties , 2005 .

[43]  C. Cobet,et al.  Ellipsometry from infrared to vacuum ultraviolet: Structural properties of thin anisotropic guanine films on silicon , 2005 .

[44]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[45]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[46]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[47]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[48]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[49]  J. H. Kang,et al.  Observation of B+-->K1(1270)+gamma. , 2004, Physical review letters.

[50]  M. Schubert,et al.  Infrared dielectric function and vibrational modes of pentacene thin films , 2004 .

[51]  Y. Yoshida,et al.  Mg-doped C60 thin film as improved n-type organic semiconductor for a solar cell , 2004 .

[52]  Stephen R. Forrest,et al.  Operational stability of electrophosphorescent devices containing p and n doped transport layers , 2003 .

[53]  Paul Heremans,et al.  Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor , 2003 .

[54]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[55]  Antoine Kahn,et al.  Charge-separation energy in films of π-conjugated organic molecules , 2000 .

[56]  Craig M. Herzinger,et al.  Infrared dielectric anisotropy and phonon modes of sapphire , 2000 .

[57]  Katarzyna Lukaszuk,et al.  Electrooptical Chromophores for Nonlinear Optical and Photorefractive Applications , 1999 .

[58]  R. W. Lof,et al.  Band gap, excitons, and Coulomb interaction in solid C60. , 1992, Physical review letters.

[59]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[60]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[61]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[62]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[63]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[64]  Y. Ooyama,et al.  New molecular design of donor-π-acceptor dyes for dye-sensitized solar cells: control of molecular orientation and arrangement on TiO2 surface , 2011 .

[65]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[66]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[67]  M. Schubert Infrared ellipsometry on semiconductor layer structures , 2004 .

[68]  R. Azzam,et al.  Ellipsometry and polarized light : North Holland, Amsterdam, 1987 (ISBN 0-444-87016-4). xvii + 539 pp. Price Dfl. 75.00. , 1987 .

[69]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .