A Remark on Topological Sequence Entropy

Let h∞(T) be the supremum of all topological sequence entropies of a dynamical system (X,T). This paper obtains the iteration invariance and commutativity of h∞(T) and proves that if T is a multisensitive transformation defined on a locally connected space, then h∞(T) = +∞. As an application, it is shown that a Cournot map is Li–Yorke chaotic if and only if its topological sequence entropy relative to a suitable sequence is positive.

[1]  Guanrong Chen,et al.  Weighted backward shift operators with invariant distributionally scrambled subsets , 2017 .

[2]  Commutativity and non-commutativity of topological sequence entropy , 1999 .

[3]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[4]  X. Ye,et al.  On sensitive sets in topological dynamics , 2008 .

[5]  Further discussion on chaos in duopoly games , 2013 .

[6]  Guanrong Chen,et al.  F-sensitivity and multi-sensitivity of hyperspatial dynamical systems , 2015 .

[7]  Roy L. Adler,et al.  Topological entropy , 2008, Scholarpedia.

[8]  Risong Li,et al.  Kato’s chaos in duopoly games , 2016 .

[9]  Positive sequence topological entropy characterizes chaotic maps , 1991 .

[10]  T. Goodman,et al.  Topological Sequence Entropy , 1974 .

[11]  Xinxing Wu Chaos of Transformations Induced Onto the Space of Probability Measures , 2016, Int. J. Bifurc. Chaos.

[12]  Wen Huang,et al.  Combinatorial lemmas and applications to dynamics , 2009 .

[13]  T. K. Subrahmonian Moothathu,et al.  Stronger forms of sensitivity for dynamical systems , 2007 .

[14]  Kairan Liu,et al.  Topological entropy of nonautonomous dynamical systems , 2019, Journal of Differential Equations.

[15]  Wen Huang,et al.  Dynamical compactness and sensitivity , 2015, 1509.08813.

[16]  Guifeng Huang,et al.  Distributional chaos in a sequence , 2007 .

[17]  Xinxing Wu,et al.  THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH'S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS , 2018 .

[18]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .

[19]  Guanrong Chen,et al.  On various definitions of shadowing with average error in tracing , 2014, 1406.5822.

[20]  SOME RESULTS ON ENTROPY AND SEQUENCE ENTROPY , 1999 .

[21]  Guanrong Chen,et al.  Sensitivity and transitivity of fuzzified dynamical systems , 2017, Inf. Sci..

[22]  Ethan Akin,et al.  Li-Yorke sensitivity , 2003 .

[23]  Topological sequence entropy of interval maps , 2004 .

[24]  Xinxing Wu,et al.  The Chain Properties and Average Shadowing Property of Iterated Function Systems , 2018 .

[25]  Xinxing Wu,et al.  On the Iteration Properties of Large Deviations Theorem , 2016, Int. J. Bifurc. Chaos.

[26]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .