Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar.

[1]  Philippe Lalanne,et al.  Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit , 2004 .

[2]  Isabelle Sagnes,et al.  Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar , 2010, 1011.1155.

[3]  Roel Baets,et al.  Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers , 2001 .

[4]  Philippe Lalanne,et al.  Photonics: Tuning holes in photonic-crystal nanocavities , 2004, Nature.

[5]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[6]  Jean-Michel Gérard,et al.  Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots , 2003 .

[7]  S Mias,et al.  Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities. , 2004, Optics express.

[8]  C. Schneider,et al.  Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. , 2010, Nature materials.

[9]  M Kamp,et al.  Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. , 2012, Physical review letters.

[10]  P Lalanne,et al.  Ultra-High Q/V Fabry-Perot microcavity on SOI substrate. , 2007, Optics express.

[11]  L. Andreani,et al.  Controlling the dynamics of a coupled atom-cavity system by pure dephasing , 2010, 1002.3753.

[12]  Philippe Lalanne,et al.  Bloch-wave engineering for high-Q, small-V microcavities , 2003 .

[13]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[14]  Christian Schneider,et al.  Oscillatory variations in the Q factors of high quality micropillar cavities , 2009 .

[15]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[16]  P. Lalanne,et al.  Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion , 2001 .

[17]  G. R. Hadley,et al.  Optical Waveguide Theory and Numerical Modelling , 2004 .

[18]  Yasuhiko Arakawa,et al.  Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot , 2011 .

[19]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[20]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[21]  Jean-Paul Hugonin,et al.  Very Large Spontaneous-Emission β Factors in Photonic-Crystal Waveguides , 2007 .

[22]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[23]  W. Vos,et al.  Ultimate fast optical switching of a planar microcavity in the telecom wavelength range , 2011, 1102.3351.

[24]  Alfred Forchel,et al.  Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity , 2011 .

[25]  Bruno Gayral,et al.  Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity , 2008, 0808.1014.

[26]  Marko Loncar,et al.  Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume. , 2009, Optics letters.

[27]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.