Long-Distance Trust-Free Quantum Key Distribution

The feasibility of trust-free long-haul quantum key distribution (QKD) is addressed. We combine measurement-device-independent QKD, as an access technology, with a quantum repeater setup, at the core of future quantum communication networks. This will provide a quantum link none of whose intermediary nodes need to be trusted, or, in our terminology, a trust-free QKD link. As the main figure of merit, we calculate the secret key generation rate when a particular probabilistic quantum repeater protocol is in use. We assume the users are equipped with imperfect single photon sources, which can possibly emit two single photons, or laser sources to implement decoy-state techniques. We consider apparatus imperfection, such as quantum efficiency and dark count of photodetectors, path loss of the channel, and writing and reading efficiencies of quantum memories. By optimizing different system parameters, we estimate the maximum distance over which users can share secret keys when a finite number of memories are employed in the repeater setup.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[3]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[4]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[5]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[6]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[7]  Mohsen Razavi,et al.  Quantum key distribution over probabilistic quantum repeaters , 2010 .

[8]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[9]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[10]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[11]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.

[12]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[13]  Mohsen Razavi,et al.  Measurement-Device-Independent Quantum Key Distribution With Ensemble-Based Memories , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Paul D. Townsend,et al.  Quantum information to the home , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[15]  Mohsen Razavi Long-distance quantum communication with neutral atoms , 2005 .

[16]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[17]  Zach DeVito,et al.  Opt , 2017 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  J. Skaar,et al.  After-gate attack on a quantum cryptosystem , 2010, 1009.2683.

[20]  M. Razavi,et al.  Long-distance quantum key distribution with imperfect devices , 2012, 1210.8042.

[21]  Mohsen Razavi,et al.  Multiple-Access Quantum Key Distribution Networks , 2011, IEEE Transactions on Communications.

[22]  Mohsen Razavi,et al.  Repeat-until-success quantum repeaters , 2014, 1407.3362.

[23]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[24]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[25]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[26]  Mohsen Razavi,et al.  Physical and architectural considerations in quantum repeaters , 2009, OPTO.

[27]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[28]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[29]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[30]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[31]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[32]  Mohsen Razavi,et al.  Architectural considerations in hybrid quantum-classical networks (Invited Paper) , 2013, 2013 Iran Workshop on Communication and Information Theory.

[33]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[35]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[36]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[37]  Hermann Kampermann,et al.  Measurement-device-independent quantum key distribution with quantum memories , 2013, 1306.3095.

[38]  Norbert Lütkenhaus Memory-assisted measurement-device-independent quantum key distribution , 2014 .