Organic semiconductor density of states controls the energy level alignment at electrode interfaces

Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions.

[1]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[2]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[3]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[4]  Antonio Facchetti,et al.  n-Channel semiconductor materials design for organic complementary circuits. , 2011, Accounts of chemical research.

[5]  A. Kahn,et al.  Gap states in pentacene thin film induced by inert gas exposure. , 2013, Physical review letters.

[6]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[7]  M. Knupfer,et al.  Site-dependent donation/backdonation charge transfer at the CoPc/Ag(111) interface. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  J. Brédas,et al.  Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. , 2002, Physical review letters.

[9]  B. Parkinson,et al.  The influence of metal work function on the barrier heights of metal/pentacene junctions , 2008 .

[10]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[11]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[12]  L. Ley,et al.  Calculating the Universal Energy‐Level Alignment of Organic Molecules on Metal Oxides , 2013 .

[13]  N. Koch,et al.  Doping of C60 sub monolayers by Fermi level pinning induced electron transfer , 2012 .

[14]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[15]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[16]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  M. Sayer,et al.  Transport Properties of Semiconducting Phosphate Glasses , 1972 .

[18]  Cheuk‐Lam Ho,et al.  Functional metallophosphors for effective charge carrier injection/transport: New robust OLED materials with emerging applications , 2009 .

[19]  Princeton University,et al.  Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level , 2004 .

[20]  C. Ambrosch-Draxl,et al.  Orbital tomography: Deconvoluting photoemission spectra of organic molecules , 2011 .

[21]  Alessandro Troisi,et al.  Evaluation of the external reorganization energy of polyacenes , 2010 .

[22]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[23]  Eung-Gun Kim,et al.  Molecular n‐Type Doping of 1,4,5,8‐Naphthalene Tetracarboxylic Dianhydride by Pyronin B Studied Using Direct and Inverse Photoelectron Spectroscopies , 2006 .

[24]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[25]  M. Knupfer,et al.  Electronic properties of interfaces between model organic semiconductors and metals , 2004 .

[26]  N. Ueno,et al.  Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy , 2009 .

[27]  K. Seki,et al.  Energy level alignment at organic/metal interfaces studied by UV photoemission: breakdown of traditional assumption of a common vacuum level at the interface , 1997 .

[28]  J. Simmons Theory of metallic contacts on high resistivity solids (II) deep traps , 1971 .

[29]  J. Simmons Theory of metallic contacts on high resistivity solids—I. Shallow traps , 1971 .

[30]  G. Koller,et al.  The electronic band alignment on nanoscopically patterned substrates , 2007 .

[31]  James C. Blakesley,et al.  Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage , 2009 .

[32]  G. Horowitz,et al.  Capacitive behavior of pentacene-based diodes: Quasistatic dielectric constant and dielectric strength , 2011 .

[33]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[34]  Norbert Koch,et al.  Band‐Bending in Organic Semiconductors: the Role of Alkali‐Halide Interlayers , 2014, Advanced materials.

[35]  Jean-Luc Brédas,et al.  Polarization energies in oligoacene semiconductor crystals. , 2008, Journal of the American Chemical Society.

[36]  H. Klauk,et al.  Fermi level pinning by gap states in organic semiconductors. , 2013, Physical review letters.

[37]  Yi-Ren Chen,et al.  High performance organic field-effect transistors , 2006, SPIE Optics + Photonics.

[38]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advances in Materials.

[39]  Norbert Koch,et al.  Work Function Independent Hole‐Injection Barriers Between Pentacene and Conducting Polymers , 2005 .

[40]  Heinz von Seggern,et al.  Pitfalls in Kelvin probe measurements , 2009 .

[41]  M. Niwano,et al.  Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment , 2004 .

[42]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[43]  N. Koch,et al.  Band bending in conjugated polymer layers. , 2011, Physical review letters.

[44]  R. B. Campbell,et al.  The crystal structure of hexacene, and a revision of the crystallographic data for tetracene , 1962 .

[45]  Hirohiko Fukagawa,et al.  The Role of the Ionization Potential in Vacuum‐Level Alignment at Organic Semiconductor Interfaces , 2007 .

[46]  J. Pflaum,et al.  Charged and metallic molecular monolayers through surface-induced aromatic stabilization. , 2013, Nature chemistry.

[47]  N. Ueno,et al.  Electron affinity of pentacene thin film studied by radiation-damage free inverse photoemission spectroscopy , 2013 .

[48]  K. Emtsev,et al.  A momentum space view of the surface chemical bond. , 2011, Physical chemistry chemical physics : PCCP.

[49]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[50]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[51]  Raphael Schlesinger,et al.  The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors , 2013 .

[52]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[53]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[54]  G. Koller,et al.  The molecular orientation of para-sexiphenyl on Cu(110) and Cu(110) p(2x1)O. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  Kazuhiro Kudo,et al.  Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: Hole stabilization versus band dispersion , 2006 .

[56]  Zheng-Hong Lu,et al.  Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces , 2013 .

[57]  N. Koch,et al.  Electrode-molecular semiconductor contacts: Work-function-dependent hole injection barriers versus Fermi-level pinning , 2006 .

[58]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[59]  Fernando Flores,et al.  Induced Density of States model for weakly-interacting organic semiconductor interfaces , 2007 .

[60]  A. Schöll,et al.  Substrate-mediated band-dispersion of adsorbate molecular states , 2013, Nature Communications.

[61]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[62]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[63]  Stephen J. Fonash,et al.  Computer simulation of actual and Kelvin‐probe‐measured potential profiles: Application to amorphous films , 1990 .

[64]  Y. Ouchi,et al.  The electronic structure and energy level alignment of porphyrin/metal interfaces studied by ultraviolet photoelectron spectroscopy , 1995 .

[65]  Bertram Batlogg,et al.  Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods , 2009, 0912.4106.