Chemicals from ethanol—The ethyl acetate one-pot synthesis

[1]  Betina Jørgensen,et al.  Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate , 2007 .

[2]  F. Bozon-Verduraz,et al.  Pd catalysts supported on MgO, ZrO2 or MgO-ZrO2: Preparation, characterization and study in hexane conversion , 2007 .

[3]  M. Kacimi,et al.  Comparative study of catalytic activity of Pd loaded hydroxyapatite and fluoroapatite in butan-2-ol conversion and methane oxidation , 2007 .

[4]  Jianfeng Chen,et al.  Preparation and characterization of novel Pd/SiO2 and Ca–Pd/SiO2 egg-shell catalysts with porous hollow silica , 2006 .

[5]  K. Waugh,et al.  The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst , 2005 .

[6]  J. Fierro,et al.  New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions , 2005 .

[7]  J. Fierro,et al.  A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures , 2005 .

[8]  T. Kurabayashi,et al.  Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst , 2004 .

[9]  Gongxuan Lu,et al.  Catalytic CO oxidation over palladium supported NaZSM-5 catalysts , 2003 .

[10]  T. Kurabayashi,et al.  Direct synthesis of ethyl acetate from ethanol carried out under pressure , 2002 .

[11]  T. Kurabayashi,et al.  Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst , 2002 .

[12]  N. Mahata,et al.  Influence of Palladium Precursors on Structural Properties and Phenol Hydrogenation Characteristics of Supported Palladium Catalysts , 2000 .

[13]  L. G. Appel,et al.  The role of water in ethanol oxidation over SnO2-supported molybdenum oxides , 2000 .

[14]  L. C. Dieguez,et al.  Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts , 2000 .

[15]  L. G. Appel,et al.  Active sites for ethanol oxidation over SnO2-supported molybdenum oxides , 2000 .

[16]  O. Yamamoto,et al.  Difference in the reactivity of acetaldehyde intermediates in the dehydrogenation of ethanol over supported Pd catalysts , 1999 .

[17]  A. Bell,et al.  The Dynamics of Oxygen Exchange with Zirconia-Supported PdO , 1999 .

[18]  Jen-Ray Chang,et al.  Ethyl acetate production from water-containing ethanol catalyzed by supported Pd catalysts : Advantages and disadvantages of hydrophobic supports , 1999 .

[19]  Raymond E. Kirk,et al.  Encyclopedia of chemical technology , 1998 .

[20]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[21]  S. Simko,et al.  Palladium Chloride (PdCl2) by XPS , 1994 .

[22]  C. Louis,et al.  Catalytic properties of silica-supported molybdenum catalysts in methanol oxidation: The influence of molybdenum dispersion , 1988 .

[23]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[24]  N. Takezawa,et al.  MECHANISM OF FORMATION OF METHYL FORMATE FROM FORMALDEHYDE OVER COPPER CATALYSTS , 1983 .

[25]  F. Bozon-Verduraz,et al.  Chemical state and reactivity of supported palladium: I. Characterization by XPS and uv-visible spectroscopy , 1978 .

[26]  E. Miyazaki,et al.  Kinetics of the Catalytic Decomposition of Methanol, Formaldehyde and Methyl Formate over a Copper-wire Surface , 1967 .

[27]  F. Bozon-Verduraz,et al.  Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts , 1992 .

[28]  G. Charlot,et al.  Quantitative inorganic analysis , 1957 .