Genome-wide association analysis identifies three new breast cancer susceptibility loci

Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10−35), 12q24 (rs1292011; P = 4.3 × 10−19) and 21q21 (rs2823093; P = 1.1 × 10−12). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.

Michael Jones | Nazneen Rahman | Daniel J. Park | Michael Bremer | Julian Peto | Matthias W. Beckmann | Peter A. Fasching | Kyriaki Michailidou | Thomas Brüning | Kamila Czene | Peter Devilee | Ruth Swann | Gord Glendon | Anna Marie Mulligan | Graham G. Giles | Alfons Meindl | Katarzyna Durda | Thilo Dörk | Barbara Burwinkel | Maartje J. Hooning | Katri Pylkäs | Arja Jukkola-Vuorinen | Arto Mannermaa | Jaana M. Hartikainen | Paolo Peterlongo | Shan Wang-Gohrke | Stefano Fortuzzi | Alison M. Dunning | Annegien Broeks | Arif B. Ekici | Henrik Flyger | Bertram Müller-Myhsok | John L Hopper | Enes Makalic | Jonine D Figueroa | Hermann Brenner | Caroline Seynaeve | Karin Leunen | Joe Dennis | Fernando Rivadeneira | Per Hall | Natalia V. Bogdanova | Heli Nevanlinna | Stig E Bojesen | Angela Cox | Robert Winqvist | Annika Lindblom | Georgia Chenevix-Trench | Anthony Swerdlow | Vessela Kristensen | Pascal Guénel | Kristiina Aittomäki | Carl Blomqvist | Børge G Nordestgaard | Sune F Nielsen | Jaana M Hartikainen | Vesa Kataja | Saila Kauppila | Christa Stegmaier | Volker Arndt | Thérèse Truong | Argyrios Ziogas | Carmel Apicella | Stephen J Chanock | Jolanta Lissowska | Ian Tomlinson | Andreas Schneeweiss | Laura Baglietto | Olivia Fletcher | Nichola Johnson | Dieter Flesch-Janys | Stefan Nickels | Giuseppe Floris | Qin Wang | Mitul Shah | Hoda Anton-Culver | Jan Lubinski | Hiltrud Brauch | Elinor Sawyer | Diana M Eccles | Jenny Chang-Claude | Diether Lambrechts | Fergus J Couch | Alan Ashworth | Montserrat Garcia-Closas | Roger L. Milne | David J Hunter | Craig Luccarini | Caroline Baynes | Clare Turnbull | Douglas F Easton | Christof Sohn | Dong-Young Noh | Veli-Matti Kosma | Peter Hillemanns | Gianluca Severi | Daniel Schmidt | Daniel J Park | Javier Benítez | Daehee Kang | Antoinette Hollestelle | Minouk Schoemaker | Isabel dos Santos Silva | Quinten Waisfisz | Leslie Bernstein | Anna González-Neira | Andre G. Uitterlinden | Rebecca Hein | Arkom Chaiwerawattana | Rita K Schmutzler | Minh Bui | Katarzyna Jaworska | Jianjun Liu | Catriona McLean | Artitaya Lophatananon | Maya Ghoussaini | Astrid Irwanto | A. Uitterlinden | M. Lux | M. Beckmann | P. Fasching | A. Ashworth | N. Rahman | D. Noh | K. Czene | P. Hall | F. Couch | A. Schneeweiss | H. Brenner | J. Chang-Claude | B. Ponder | S. Chanock | M. García-Closas | B. Bonanni | D. Hunter | J. Benítez | F. Rivadeneira | G. Giles | G. Severi | J. Hopper | E. John | T. Dörk | M. Southey | A. Lophatananon | A. Cox | D. Easton | A. Hollestelle | Chen-Yang Shen | A. Broeks | D. Lambrechts | J. Peto | E. Khusnutdinova | N. Orr | M. Lathrop | H. Brauch | V. Kristensen | C. Sohn | P. Hillemanns | A. Ziogas | H. Anton-Culver | P. Guénel | A. Dunning | Shahana Ahmed | D. Eccles | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | L. Brinton | J. Lissowska | H. Nevanlinna | D. Kang | K. Yoo | Jianjun Liu | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | M. Reed | R. Milne | A. González-Neira | C. Justenhoven | J. Beesley | Xiaoqing Chen | A. Mannermaa | V. Kosma | V. Kataja | J. Hartikainen | M. Shah | K. Stevens | M. Kerin | K. Muir | L. Bernstein | A. Lindblom | K. Michailidou | M. Ghoussaini | J. Dennis | M. Schmidt | Qin Wang | E. Dicks | C. Turnbull | I. D. S. Silva | K. Aittomäki | C. Blomqvist | A. Irwanto | Q. Waisfisz | H. Meijers-Heijboer | R. Hein | A. Meindl | R. Schmutzler | B. Müller-Myhsok | P. Lichtner | E. Makalic | D. Schmidt | C. Luccarini | S. F. Nielsen | H. Flyger | Xianshu Wang | S. Nickels | D. Flesch‐Janys | T. Truong | F. Menegaux | F. Marmé | B. Burwinkel | M. Alonso | E. Sawyer | I. Tomlinson | I. Andrulis | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | C. Apicella | H. Tsimiklis | L. Baglietto | A. Ekici | H. Müller | V. Arndt | C. Stegmaier | A. Swerdlow | J. Figueroa | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | T. Brüning | P. Peterlongo | S. Manoukian | C. Seynaeve | A. Jakubowska | J. Lubiński | Katarzyna Jaworska | K. Durda | N. Antonenkova | Chia-Ni Hsiung | P. Pharoah | S. Verhoef | M. Schoemaker | C. V. van Asperen | M. Bermisheva | M. Bremer | U. Eilber | S. Wang-gohrke | A. V. D. van den Ouweland | R. Swann | W. Tapper | C. Baynes | M. Maranian | Adam M. Lee | G. Floris | F. Hogervorst | M. Humphreys | J. Karstens | R. Oldenburg | Jyh‐cherng Yu | K. Driver | S. Kauppila | A. Miron | K. Leunen | S. Gerty | L. Velentzis | M. Bui | C. Mclean | E. Cordina-Duverger | D. Conroy | Darya Prokofieva | Mark Lathrop | Peter Lichtner | Sara Margolin | Bernardo Bonanni | Irene L. Andrulis | Nicholas Orr | M. Rosario Alonso | Siranoush Manoukian | Ed Dicks | Bruce A. J. Ponder | Esther M. John | Xiaoqing Chen | Jyh-Cherng Yu | Rob A.E.M. Tollenaar | Marjanka K Schmidt | Jonathan Beesley | Elza Khusnutdinova | Keun-Young Yoo | Michael P. Lux | Christina Justenhoven | Heiko Müller | Senno Verhoef | G. G. Alnæs | Kristy Driver | Helen Tsimiklis | Louise Brinton | Shahana Ahmed | Ursula Eilber | Marina Bermisheva | Emilie Cordina-Duverger | Hanne Meijers-Heijboer | Darya Prokofieva | Peter Schürmann | Chen-Yang Shen | Kenneth R Muir | Melissa Southey | Manjeet K Humphreys | Frederik Marme | Don M. Conroy | Paul D.P. Pharoah | Ania Jakubowska | Alexander Miron | Xianshu Wang | Annie Perkins | Florence Menegaux | Christina Clarke Dur | Chia-Ni Hsiung | Grethe Grenaker Alnæs | Pei-Ei Wu | Michael Kerin | C. C. Dur | Manjeet K. Humphreys | Melanie Maranian | Suthee Rattanamongkongul | Johann H. Karstens | Natalia N. Antonenkova | Malcolm WR Reed | Don Conroy | Adam Lee | Kristen Stevens | Susan M Gerty | Frans BL Hogervorst | Yuri I. Rogov | Betul T. Yesilyurt | Anne-Lise Børrensen-Dale | Christie J. van Asperen | Rogier A. Oldenburg | Ans M.W. van den Ouweland | Louiza Velentzis | Will J Tapper | Nikki J Graham | Arkom Chaiwerawattana | N. Graham | S. Fortuzzi | G. Alnaes | Suthee Rattanamongkongul | Y. Rogov | Anne-Lise Børrensen-Dale | I. dos Santos Silva | A. Perkins | Pei‐Ei Wu | Michael P. Jones | B. Yesilyurt | D. Prokofieva | C. Mclean | A. Uitterlinden | H. Müller | Thérèse Truong | P. Hall | D. Hunter | Qin Wang | D. Flesch-Janys | Thérèse Truong | Stefano Fortuzzi | Kristen Stevens | Heiko Müller | Jyh-Cherng Yu

[1]  M. Inaba,et al.  Significance of the parathyroid hormone-related protein expression in breast carcinoma , 2000, Breast cancer.

[2]  M. Spinella,et al.  Limiting Effects of RIP140 in Estrogen Signaling , 2005, Journal of Biological Chemistry.

[3]  J. Peto,et al.  High constant incidence in twins and other relatives of women with breast cancer , 2000, Nature Genetics.

[4]  J. Wysolmerski,et al.  Parathyroid hormone-related protein: from hypercalcemia of malignancy to developmental regulatory molecule. , 1996, The American journal of the medical sciences.

[5]  T. Stokke,et al.  Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer , 2006, BMC Genomics.

[6]  J. Wysolmerski,et al.  Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. , 1994, Annual review of medicine.

[7]  M. Parker,et al.  RIP-140 interacts with multiple nuclear receptors by means of two distinct sites , 1996, Molecular and cellular biology.

[8]  A. Sigurdsson,et al.  Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.

[9]  David M. Thomas,et al.  Parathyroid hormone-related protein protects against mammary tumor emergence and is associated with monocyte infiltration in ductal carcinoma in situ. , 2009, Cancer research.

[10]  J. Seidman,et al.  Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome , 1997, Nature Genetics.

[11]  J. Zucman‐Rossi,et al.  Bi-allelic inactivation of TCF1 in hepatic adenomas , 2002, Nature Genetics.

[12]  Carlos Caldas,et al.  A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the Proliferation, Immune response and RNA splicing modules in breast cancer , 2008, Breast Cancer Research.

[13]  J. Nicolas,et al.  Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. , 1994, Cancer research.

[14]  Paolo Vineis,et al.  Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3 , 2011, Nature Genetics.

[15]  Tien Yin Wong,et al.  Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians , 2011, Nature Genetics.

[16]  F. Couch,et al.  The Role of Tbx2 and Tbx3 in Mammary Development and Tumorigenesis , 2004, Journal of Mammary Gland Biology and Neoplasia.

[17]  M. Freeman,et al.  A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. , 1991, Science.

[18]  A. F. Stewart,et al.  The physiology of parathyroid hormone-related protein: an emerging role as a developmental factor. , 1998, Annual review of physiology.

[19]  M. Spinella,et al.  Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. , 2001, Biochemical and biophysical research communications.

[20]  Farin Kamangar,et al.  Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  Jane E. Carpenter,et al.  A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.

[22]  D. Easton,et al.  Risk prediction models for familial breast cancer. , 2006, Future oncology.

[23]  Douglas F Easton,et al.  Genome-wide association studies in common cancers--what have we learnt? , 2010, Current opinion in genetics & development.

[24]  Christian Gieger,et al.  A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium , 2009, Nature Genetics.

[25]  E. Lander,et al.  Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling , 2010, Proceedings of the National Academy of Sciences.

[26]  Peter Kraft,et al.  Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics , 2008, PLoS genetics.

[27]  J. Wysolmerski,et al.  Hypercalcemia in Breast Cancer: An Echo of Bone Mobilization During Lactation? , 2005, Journal of Mammary Gland Biology and Neoplasia.

[28]  J. Orloff,et al.  Defining the roles of parathyroid hormone-related protein in normal physiology. , 1996, Physiological reviews.

[29]  Daniel F. Schwarz,et al.  New susceptibility locus for coronary artery disease on chromosome 3q22.3 , 2009, Nature Genetics.

[30]  Hongbing Shen,et al.  Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations , 2011, Nature Genetics.

[31]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[32]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[33]  J. Gustafsson,et al.  Regulation of Subnuclear Localization Is Associated with a Mechanism for Nuclear Receptor Corepression by RIP140 , 2003, Molecular and Cellular Biology.

[34]  R. A. Bailey,et al.  Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes , 2007, Nature Genetics.

[35]  J. Hopper,et al.  Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. , 2006, Cancer research.

[36]  J. Wysolmerski,et al.  Parathyroid Hormone-Related Protein: A Developmental Regulatory Molecule Necessary for Mammary Gland Development , 2004, Journal of Mammary Gland Biology and Neoplasia.

[37]  Christiana Kartsonaki,et al.  A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population , 2010, Nature Genetics.

[38]  B. Lanske,et al.  Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death , 1995, Molecular and cellular biology.

[39]  Y. Kamatani,et al.  Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. , 2009, Gastroenterology.

[40]  Taesung Park,et al.  A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits , 2009, Nature Genetics.

[41]  Michael Jones,et al.  Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. , 2011, Journal of the National Cancer Institute.

[42]  Virginia E. Papaioannou,et al.  Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome , 2003, Development.

[43]  Jaana M. Hartikainen,et al.  A common coding variant in CASP8 is associated with breast cancer risk , 2007, Nature Genetics.

[44]  Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. , 2011 .

[45]  Z. Shao,et al.  Retinoid antagonism of estrogen-responsive transforming growth factor alpha and pS2 gene expression in breast carcinoma cells. , 1992, Cancer research.

[46]  H. Zhang,et al.  Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140kDa (RIP140) interact and cooperate in estrogen signaling. , 2009, The international journal of biochemistry & cell biology.

[47]  C. Russo,et al.  Parathyroid hormone‐related protein (PTHrP) inhibits mitochondrial‐dependent apoptosis through CK2 , 2007, Journal of cellular physiology.

[48]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[49]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[50]  W. Willett,et al.  A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.

[51]  D. Postma,et al.  Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction , 2009, Nature Genetics.

[52]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[53]  J. Gray,et al.  TBX3 and Its Isoform TBX3+2a Are Functionally Distinctive in Inhibition of Senescence and Are Overexpressed in a Subset of Breast Cancer Cell Lines , 2004, Cancer Research.

[54]  J. Hayman,et al.  Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. , 1990, Cancer research.

[55]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[56]  Andrew D. Johnson,et al.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..

[57]  J. Wysolmerski Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation , 2010, Annals of the New York Academy of Sciences.

[58]  C. Kovacs,et al.  Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. , 1997, Endocrine reviews.

[59]  Patrick Neven,et al.  Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. , 2011, Human molecular genetics.

[60]  U. Hellman,et al.  Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients , 2006, International journal of cancer.

[61]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[62]  S. Cairo,et al.  Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. , 2007, Cancer research.

[63]  J. Benítez,et al.  Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast cancer: a two-stage Spanish case-control study. , 2009, Gynecologic oncology.

[64]  T. Nolan,et al.  Coexpression of parathyroid hormone related protein and its receptor in early breast cancer predicts poor patient survival. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[65]  M. Spinella,et al.  Negative Feedback at the Level of Nuclear Receptor Coregulation , 2003, Journal of Biological Chemistry.

[66]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[67]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[68]  A. Rosenwald,et al.  The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. , 2011, Molecular cell.