Accurate masses and radii of normal stars: modern results and applications

This article presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known within errors of ±3% accuracy or better. All of them are non-interacting systems, and so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (Astron Astrophys Rev 3:91–126, 1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with unprecedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay between convection, diffusion, and other non-classical effects in stellar models. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. We show that the formulae for pseudo-synchronisation of stars in eccentric orbits predict the observed rotations quite well, except for very young and/or widely separated stars. Deviations do occur, however, especially for stars with convective envelopes. The superior data set finally demonstrates that apsidal motion rates as predicted from General Relativity plus tidal theory are in good agreement with the best observational data. No reliable binary data exist, which challenge General Relativity to any significant extent. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above $${0.6\,M_{\odot}}$$. Simple, polynomial functions of Teff, log g and [Fe/H] yield M and R within errors of 6 and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of Teff and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to be better than 3%, but without fundamental radius determinations (except α Aur). We discuss the prospects for improving these and other stellar parameters in the near future.

[1]  D. Kilkenny,et al.  A photometric and spectroscopic study of the early-type binary AI Crucis , 1986 .

[2]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[3]  J. Southworth,et al.  Chemical evolution of high-mass stars in close binaries – I. The eclipsing binary V453 Cygni , 2008, 0812.3769.

[4]  M. Wolf On the apsidal motion of MY Cygni , 2009 .

[5]  R. M. Williamon Photometric study of MY Cyg. , 1975 .

[6]  Benjamin F. Lane,et al.  PHASES High-Precision Differential Astrometry of δ Equulei , 2005, astro-ph/0507585.

[7]  D. Popper A Pre--Main-Sequence Star in the Detached Binary EK Cephei , 1987 .

[8]  Don A. VandenBerg,et al.  The Victoria-Regina Stellar Models: Evolutionary Tracks and Isochrones for a Wide Range in Mass and Metallicity that Allow for Empirically Constrained Amounts of Convective Core Overshooting , 2006 .

[9]  E. M. Standish Report of the IAU WGAS Sub-group on Numerical Standards , 1995 .

[10]  G. Torres,et al.  ABSOLUTE PROPERTIES OF THE MAIN-SEQUENCE ECLIPSING BINARY STAR GX GEMINORUM: CONSTRAINTS ON CONVECTIVE CORE OVERSHOOTING , 2008 .

[11]  The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk , 2007, 0707.1891.

[12]  A. Claret,et al.  Absolute Dimensions of the Unevolved B-Type Eclipsing Binary GG Orionis , 2000, astro-ph/0008299.

[13]  D. Popper VZ Canum Venaticorum and AI Hydrae, Detached F Type Binaries with Variable Components , 1988 .

[14]  Jeremy Goodman,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1996 .

[15]  D. Latham,et al.  The Hyades Binaries θ1 Tauri and θ2 Tauri: The Distance to the Cluster and the Mass-Luminosity Relation , 1997 .

[16]  M. Wolf,et al.  Combining astrometry with the light-time effect: The case of VW Cep, ζ Phe and HT Vir† , 2007, 0711.3980.

[17]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[18]  C. Català,et al.  Pulsations and metallicity of the pre-main sequence eclipsing spectroscopic binary RS Cha , 2005 .

[19]  Laszlo Sturmann,et al.  First Results from the CHARA Array. V. Binary Star Astrometry: The Case of 12 Persei , 2006 .

[20]  J. Southworth,et al.  Absolute dimensions of eclipsing binaries. XXVI.. Setting a new standard: Masses, radii, and abundan , 2008, 0806.3218.

[21]  F. V. Leeuwen,et al.  Hipparcos, the New Reduction of the Raw Data , 2007 .

[22]  J. V. Clausen,et al.  Absolute dimensions of eclipsing binaries. XIII. AI Phoenicis : a casestudy in stellar evolution. , 1988 .

[23]  L. Marschall,et al.  The Eclipsing Binary V1061 Cygni: Confronting Stellar Evolution Models for Active and Inactive Solar-Type Stars , 2005, astro-ph/0512072.

[24]  Robert E. Wilson,et al.  Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .

[25]  J. J. Fuensalida,et al.  The BVJK light curves of the short-period eclipsing binary CG Cygni , 1987 .

[26]  K. Pavlovski,et al.  The eclipsing binary V578 Mon in the Rosette nebula: age and distance to NGC 2244 using Fourier disentangled component spectra ?,?? , 2000 .

[27]  Antonio Claret,et al.  Absolute Properties of the Eclipsing Binary Star V459 Cassiopeiae , 2004 .

[28]  Guillermo Torres,et al.  Absolute Properties of the Main-Sequence Eclipsing Binary Star WW Camelopardalis , 2002 .

[29]  G. P. D. Mello,et al.  The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances , 2008, 0804.3712.

[30]  Slavek M. Rucinski,et al.  Spectral-Line Broadening Functions of W UMA-Type Binaries. III. W UMA , 1993 .

[31]  Benjamin F. Lane,et al.  Phases differential astrometry and the mutual inclination of the v819 herculis triple star system , 2006 .

[32]  Benjamin F. Lane,et al.  MASSES, LUMINOSITIES, AND ORBITAL COPLANARITIES OF THE μ ORIONIS QUADRUPLE-STAR SYSTEM FROM PHASES DIFFERENTIAL ASTROMETRY , 2007, 0710.2126.

[33]  Mercedes Lopez-Morales,et al.  On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars , 2007, astro-ph/0701702.

[34]  A. Turner,et al.  Properties of main-sequence eclipsing binaries : into the G stars with HS Aurigae, FL Lyrae and EW Orionis. , 1986 .

[35]  S. Zucker,et al.  Study of Spectroscopic Binaries with TODCOR. III. Application to Triple-lined Systems , 1995 .

[36]  I. Hubeny,et al.  EE Pegasi Revisited: A Spectrum Synthesis and New Light Synthesis Study , 1996 .

[37]  P. Maxted,et al.  Eclipsing binaries in open clusters. II. V453 Cyg in NGC 6871 , 2004, astro-ph/0403572.

[38]  H. Levato,et al.  Separation of composite spectra: the spectroscopic detection of an eclipsing binary star , 2006 .

[39]  D. Popper,et al.  Absolute dimensions and masses of eclipsing binaries. IV. EE Pegasi is a triple star. , 1984 .

[40]  et al.,et al.  THE VISUAL ORBIT OF 64 PISCIUM , 1999 .

[41]  F. Grundahl,et al.  A new standard: age and distance for the open cluster NGC 6791 from the eclipsing binary member V20 , 2008, 0810.2407.

[42]  O. Franz,et al.  Interferometric Astrometry of the Low-Mass Binary Gl 791.2 (= HU Del) Using HUBBLE SPACE TELESCOPE Fine Guidance Sensor 3: Parallax and Component Masses , 2000, astro-ph/0005026.

[43]  D. Latham,et al.  Absolute Dimensions of Eclipsing Binaries. XXIII. The F-Type System EI Cephei , 2000 .

[44]  Lynne A. Hillenbrand,et al.  An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks , 2003, astro-ph/0312189.

[45]  G. Torres,et al.  ABSOLUTE PROPERTIES OF THE SPOTTED ECLIPSING BINARY STAR CV BOÖTIS , 2008, 0809.2287.

[46]  S. Lacour,et al.  The Radius and other fundamental parameters of the F9 v star β Virginis , 2008, 0811.1804.

[47]  J. Ferguson,et al.  A Constraint on Z☉ from Fits of Isochrones to the Color-Magnitude Diagram of M67 , 2007, 0708.1172.

[48]  W. J. Tango,et al.  The radius and mass of the subgiant star β Hyi from interferometry and asteroseismology , 2007 .

[49]  P. Ventura,et al.  First Results on Pre-Main-Sequence Evolution, Including a Magnetic Field , 2000 .

[50]  D. Latham,et al.  Absolute dimensions and masses of IT cassiopeiae. , 1997 .

[51]  P. Harmanec,et al.  Apsidal motion in eccentric eclipsing binaries: CW Cephei, V478 Cygni, AG Persei, and IQ Persei , 2006 .

[52]  G. Torres,et al.  Absolute Properties of the Main-Sequence Eclipsing Binary Star EY Cephei , 2006 .

[53]  D. Popper,et al.  Rediscussion of eclipsing binaries. XIV. The bright AM system V624 Herculis. , 1984 .

[54]  D. Popper Rediscussion of eclipsing binaries. X. The B stars AG Persei and CW Cephei. , 1974 .

[55]  W. Gieren,et al.  The Araucaria Project , 2005, astro-ph/0509688.

[56]  A. Claret,et al.  Absolute Properties of the Main-Sequence Eclipsing Binary Star V885 Cygni , 2004 .

[57]  Nicholas M. Elias,et al.  Navy Prototype Optical Interferometer Observations of the Double Stars Mizar A and Matar , 1998 .

[58]  R. Koch,et al.  Spectroscopic binary orbits from ultraviolet radial velocities , 1993 .

[59]  F. P. Schloerb,et al.  Physical Orbit for λ Virginis and a Test of Stellar Evolution Models , 2007 .

[60]  Jens Clausen,et al.  Absolute dimensions of eclipsing binaries. I. , 1983 .

[61]  I. Ribas,et al.  The 0.4-$M_{\odot}$ eclipsing binary CU Cancri - Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk , 2002, astro-ph/0211086.

[62]  Á. Giménez The Apsidal Motion Test in Eclipsing Binaries , 2006, Proceedings of the International Astronomical Union.

[63]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[64]  James MacDonald,et al.  Are Magnetically Active Low-Mass M Dwarfs Completely Convective? , 2001 .

[65]  D. Latham,et al.  Absolute Properties of the Eclipsing Binary Star FS Monocerotis , 2000 .

[66]  G. Torres,et al.  HR 8257: A THREE-DIMENSIONAL ORBIT AND BASIC PROPERTIES , 2009 .

[67]  Guillermo Torres,et al.  Absolute Dimensions of the A-Type Eclipsing Binary V364 Lacertae , 1999 .

[68]  P. Etzel,et al.  A Photometric Analysis of the Apsidal Motion Binary System PV Cassiopeiae , 1994 .

[69]  CD Tau: a detached eclipsing binary with a solar-mass companion , 1999, astro-ph/9905110.

[70]  John Southworth,et al.  Absolute dimensions of eclipsing binaries. XXIV. The Be star system DW Carinae, a member of the open , 2006, astro-ph/0610404.

[71]  Jens Viggo Clausen,et al.  The Absolute Dimensions of Eclipsing Binaries. XXII. The Unevolved F-Type System HS Hydrae , 1997 .

[72]  Tsevi Mazeh,et al.  STUDY OF SPECTROSCOPIC BINARIES WITH TODCOR. I: A NEW TWO-DIMENSIONAL CORRELATION ALGORITHM TO DERIVE THE RADIAL VELOCITIES OF THE TWO COMPONENTS , 1994 .

[73]  M. Mayor,et al.  The Geneva–Copenhagen Survey of the Solar Neighbourhood , 2004, Publications of the Astronomical Society of Australia.

[74]  Guillermo Torres,et al.  BINARY ORBIT, PHYSICAL PROPERTIES, AND EVOLUTIONARY STATE OF CAPELLA (α AURIGAE) , 2009, 0906.0977.

[75]  F. Thevenin,et al.  The diameters of $\alpha$ Centauri A and B - A comparison of the asteroseismic and VINCI/VLTI views , 2003 .

[76]  P. North,et al.  Eclipsing binaries with candidate CP stars. II. Parameters of the system V392 Carinae. , 2001 .

[77]  Apsidal motion in southern eccentric eclipsing binaries: V539 Ara, GG Lup, V526 Sgr and AO Vel , 2005 .

[78]  C. Lacy Radii of nearby stars: an application of the Barnes-Evans relation. , 1977 .

[79]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[80]  B. Willems,et al.  New results on the apsidal-motion test to stellar structure and evolution including the effects of dynamic tides , 2002 .

[81]  Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking , 1999, astro-ph/9909073.

[82]  Nonadiabatic resonant dynamic tides and orbital evolution in close binaries , 2002, astro-ph/0211198.

[83]  I. Ribas,et al.  The effect of activity on stellar temperatures and radii , 2007, 0711.3523.

[84]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[85]  D. Popper Orbits of Detached Main-Sequence Eclipsing Binaries of Types Late F to K. I.RT Andromedae and CG Cygni , 1994 .

[86]  E. Guinan,et al.  ABSOLUTE PROPERTIES OF THE LOW-MASS ECLIPSING BINARY CM DRACONIS , 2008, 0810.1541.

[87]  G. Torres,et al.  Absolute Properties of the Eclipsing Binary Star RW Lacertae , 2005 .

[88]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[89]  Andrew F. Boden,et al.  Testing Models of Stellar Evolution for Metal-poor Stars: An Interferometric-spectroscopic Orbit for the Binary HD 195987 , 2002 .

[90]  The early-type close binary CV Velorum revisited , 2007, astro-ph/0701742.

[91]  D. Gies,et al.  Tomographic separation of composite spectra - The components of the O-star spectroscopic binary AO Cassiopeiae , 1991 .

[92]  D. Latham,et al.  Cross-Correlation in Four Dimensions: Application to the Quadruple-lined Spectroscopic System HD 110555 , 2007, astro-ph/0703268.

[93]  A. Tokovinin,et al.  New and Improved Parameters of HD 202908=ADS 14839: A Spectroscopic-Visual Triple System , 1997 .

[94]  J. Coughlin,et al.  ORBITAL SOLUTIONS AND ABSOLUTE ELEMENTS OF THE ECLIPSING BINARY MY CYGNI , 2009 .

[95]  et al.,et al.  The Visual Orbit of Pegasi , 1999 .

[96]  F. Pepe,et al.  Constraining the difference in convective blueshift between the components of alpha Centauri with precise radial velocities , 2002 .

[97]  U. Munari,et al.  Asiago eclipsing binaries program II. V505 Persei , 2007, 0712.3387.

[98]  John Southworth,et al.  Eclipsing Binaries in Open Clusters , 2003, Proceedings of the International Astronomical Union.

[99]  R. Koch,et al.  Spectroscopic binary orbits from ultraviolet radial velocities : paper 10 : CW Cephei (HD 218066) , 1992 .

[100]  Johannes Andersen,et al.  Accurate masses and radii of normal stars , 1991 .

[101]  J. Andersen,et al.  Absolute dimensions of eclipsing binaries. X. V1143 Cygni. , 1987 .

[102]  M. Imbert Vitesses radiales photoélectriques de binaires à éclipses - VI. Orbites spectroscopiques et éléments physiques de 12 étoiles doubles Photoelectric radial velocities of eclipsing binaries VI. Orbital and physical elements of 12 double stars , 2002 .

[103]  Andrew F. Boden,et al.  A Physical Orbit for the High Proper Motion Binary HD 9939 , 2006, astro-ph/0601515.

[104]  I. Ribas,et al.  GU Bootis: A New 0.6 M☉ Detached Eclipsing Binary , 2005, astro-ph/0505001.

[105]  Towards Better Age Estimates for Stellar Populations : The Y 2 Isochrones for Solar Mixture , 2001 .

[106]  Alexander G. Kosovichev,et al.  Solving the Discrepancy between the Seismic and Photospheric Solar Radius , 2007, 0711.2392.

[107]  Ignasi Ribas,et al.  Absolute Dimensions of the M-Type Eclipsing Binary YY Geminorum (Castor C): A Challenge to Evolutionary Models in the Lower Main Sequence* , 2001 .

[108]  T. Zwitter,et al.  Asiago eclipsing binaries program , 2008 .

[109]  Burke M. Smith A Spectroscopic Study of Aurigae. , 1948 .

[110]  E. Lastennet,et al.  Detached double-lined eclipsing binaries as critical tests of stellar evolution - Age and metallicity determinations from the HR diagram , 2002, astro-ph/0211501.

[111]  G. Henry,et al.  HD 71636, A Newly Discovered Eclipsing Binary , 2006 .

[112]  THE ECLIPSING BINARY V1061 CYGNI: CONFRONTING STELLAR EVOLUTION MODELS FOR ACTIVE AND INACTIVE SOLAR-TYPE STARS , 2005, astro-ph/0512072.

[113]  G. Savonije,et al.  Orbital evolution by dynamical tides in solar type stars. Application to binary stars and planetary orbits , 2002 .

[114]  Daniel M. Popper,et al.  Rediscussion of Eclipsing Binaries. XVII. Spectroscopic Orbits of OB Systems with a Cross-Correlation Procedure , 1991 .

[115]  E. Sturm,et al.  Disentangling of composite spectra. , 1994 .

[116]  A. Claret,et al.  Absolute Properties of the Eclipsing Binary Star V459 Cassiopeiae , 2004 .

[117]  G. Torres,et al.  Absolute Properties of the Main-Sequence Eclipsing Binary Star BP Vulpeculae , 2003 .

[118]  D. Latham,et al.  ACCURATE MASS DETERMINATION FOR DOUBLE-LINED SPECTROSCOPIC BINARIES BY DIGITAL CROSS-CORRELATION SPECTROSCOPY : DM VIRGINIS REVISITED , 1996 .

[119]  D. Popper Orbits of detached main-sequence eclipsing binaries of types late F to K. II. UV leonis, UV piscium, and BH virginis. , 1997 .

[120]  J. Sowell,et al.  Orbital Solutions and Absolute Elements of the Eclipsing Binary AY Camelopardalis , 2004 .

[121]  U. Munari,et al.  Asiago eclipsing binaries program - III. V570 Persei , 2008 .

[122]  Klaus-Peter Schröder,et al.  Further critical tests of stellar evolution by means of double-lined eclipsing binaries , 1997 .

[123]  David Mozurkewich,et al.  Orbital and Stellar Parameters of Omicron Leonis from Spectroscopy and Interferometry , 2001 .

[124]  D. Popper,et al.  PROCEDURES FOR RADIAL VELOCITIES OF CLOSE BINARIES FROM SPECTRA OBTAINED WITH THE LICK ECHELLE-CCD SPECTROMETER , 1994 .

[125]  A. Claret,et al.  Stellar models for a wide range of initial chemical compositions until helium burning - IV. From X = 0.65 to X = 0.80, for Z = 0.004 , 1997 .

[126]  A. Claret,et al.  Does convective core overshooting depend on stellar mass? Tests using double-lined eclipsing binaries , 2007 .

[127]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[128]  A. Claret,et al.  Absolute Properties of the Upper Main-Sequence Eclipsing Binary Star MU Cassiopeiae , 2004 .

[129]  Andrew F. Boden,et al.  Testing Stellar Models with an Improved Physical Orbit for 12 Bootis , 2005 .

[130]  Á. Giménez,et al.  On the Apsidal Motion of DI Herculis , 1988 .

[131]  T. Mazeh Observational Evidence for Tidal Interaction in Close Binary Systems , 2007, 0801.0134.

[132]  A critique of disentangling as a method of deriving spectroscopic orbits , 1997, astro-ph/9711011.

[133]  The dynamical tide in a rotating 10 Msun main sequence star , 1998, astro-ph/9810493.

[134]  B. Edvardsson,et al.  The chemical evolution of the galactic disk , 1993 .

[135]  A. Claret,et al.  Tidal evolution and oscillations in binary stars , 2005 .

[136]  S. Csizmadia,et al.  On the apsidal motion of BP Vulpeculae , 2008, 0812.2363.

[137]  R. L. Duncombe,et al.  Precise Masses for Wolf 1062 AB from Hubble Space Telescope Interferometric Astrometry and McDonald Observatory Radial Velocities , 2000, astro-ph/0012045.

[138]  A. Claret,et al.  Rapid apsidal motion in eccentric eclipsing binaries: OX Cassiopeia, PV Cassiopeia, and CO Lacertae , 2008 .

[139]  Apsidal motion in the close binary IT cassiopeiae , 2001 .

[140]  U. Munari,et al.  Asiago eclipsing binaries program I. V432 Aurigae , 2004 .

[141]  G. Weigelt,et al.  Accurate masses of low mass stars GJ 765.2AB (0.83 $\mathcal{M}_{\odot} +$ 0.76 $\mathcal{M}_{\odot}$) , 2007 .

[142]  S. T. Ridgway,et al.  First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars , 2006, astro-ph/0602105.

[143]  S. Williams SYSTEM PARAMETERS FOR THE ECLIPSING B-STAR BINARY HD 42401 , 2008, 0809.3747.

[144]  A. Claret,et al.  Absolute dimensions of eclipsing binaries. XXV. U Ophiuchi and the evolution and composition of 5 M☉ stars , 2007 .

[145]  T. Pribulla,et al.  Photometric study of the eclipsing binary V1034 Sco , 2005 .

[147]  S. Söderhjelm,et al.  Visual binary orbits and masses POST HIPPARCOS , 1999 .

[148]  Keivan G. Stassun,et al.  Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary , 2003, astro-ph/0312575.

[149]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[150]  Daniel M. Popper,et al.  SOME DOUBLE-LINED ECLIPSING BINARIES WITH METALLIC-LINE SPECTRA. , 1971 .

[151]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[152]  S. Albrecht,et al.  The spin axes orbital alignment of both stars within the eclipsing binary system V1143 Cyg using the Rossiter-McLaughlin effect , 2007, 0708.2918.

[153]  F. Grundahl,et al.  AGE AND DISTANCE FOR THE OLD OPEN CLUSTER NGC 188 FROM THE ECLIPSING BINARY MEMBER V 12 , 2009, 0903.3566.

[154]  A. Claret,et al.  Absolute dimensions of detached eclipsing binaries – I. The metallic‐lined system WW Aurigae , 2005, astro-ph/0507629.