Lagrangian cobordism in Lefschetz fibrations

Given a symplectic manifold $(M^{2n},\omega)$ we study Lagrangian cobordisms $V\subset E$ where $E$ is the total space of a Lefschetz fibration having $M$ as generic fiber. We prove a generation result for these cobordisms in the appropriate derived Fukaya category. As a corollary, we analyze the relations among the Lagrangian submanifolds $L\subset M$ that are induced by these cobordisms. This leads to a unified treatment - and a generalization - of the two types of relations among Lagrangian submanifolds of $M$ that were previously identified in the literature: those associated to Dehn twists that were discovered by Seidel and the relations induced by cobordisms in trivial symplectic fibrations described in our previous work.

[1]  C. Woodward,et al.  Exact triangle for fibered Dehn twists , 2015, 1503.07614.

[2]  O. Cornea,et al.  Categorification of Seidel’s representation , 2013, 1307.7235.

[3]  O. Cornea,et al.  Lagrangian cobordism and Fukaya categories , 2013, 1304.6032.

[4]  Nermin Salepci,et al.  Products of pairs of Dehn twists and maximal real Lefschetz fibrations , 2011, Nagoya Mathematical Journal.

[5]  Nermin Salepci Invariants of totally real Lefschetz fibrations , 2012 .

[6]  P. Seidel Lagrangian homology spheres in (A_m) Milnor fibres , 2012, 1202.1955.

[7]  P. Seidel,et al.  Fukaya A∞-structures Associated to Lefschetz Fibrations. II , 2014, 1404.1352.

[8]  O. Cornea,et al.  Lagrangian cobordism. I , 2011, 1109.4984.

[9]  Nermin Salepci Classification of totally real elliptic Lefschetz fibrations via necklace diagrams , 2011, 1104.1794.

[10]  Toën Bertrand,et al.  Lectures on DG-Categories , 2011 .

[11]  Nermin Salepci Real elements in the mapping class group of $T^2$ , 2010, 1006.0752.

[12]  O. Yong-Geun Seidel's long exact sequence on Calabi-Yau manifolds , 2010, 1002.1648.

[13]  O. Cornea,et al.  Rigidity and uniruling for Lagrangian submanifolds , 2008, 0808.2440.

[14]  Y. Oh,et al.  Lagrangian intersection floer theory : anomaly and obstruction , 2009 .

[15]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[16]  Dusa McDuff,et al.  J-Holomorphic Curves and Symplectic Topology , 2004 .

[17]  P. Seidel A long exact sequence for symplectic Floer cohomology , 2001, math/0105186.

[18]  Richard P. Thomas Moment maps, monodromy and mirror manifolds , 2001, math/0104196.

[19]  C. Vafa,et al.  D-Branes And Mirror Symmetry , 2000, hep-th/0005247.

[20]  P. Seidel Lagrangian two-spheres can be symplectically knotted , 1998, math/9803083.

[21]  C. Thomas INTRODUCTION TO SYMPLECTIC TOPOLOGY (Oxford Mathematical Monographs) , 1997 .

[22]  Y. Oh Addendum to “Floer Cohomology of Lagrangian Intersections and Pseudo-Holomorphic Discs, I” , 1995 .

[23]  Yong-Geun Oh,et al.  Floer cohomology of lagrangian intersections and pseudo‐holomorphic disks I , 1993 .

[24]  Jean-Claude Sikorav,et al.  Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents , 1991 .

[25]  L. Polterovich The surgery of lagrange submanifolds , 1991 .

[26]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[27]  A. Floer,et al.  Morse theory for Lagrangian intersections , 1988 .