The biodegradation of aromatic hydrocarbons by bacteria

Aromatic compounds of both natural and man-made sources abound in the environment. The degradation of such chemicals is mainly accomplished by microorganisms. This review provides key background information but centres on recent developments in the bacterial degradation of selected man-made aromatic compounds. An aromatic compound can only be considered to be biodegraded if the ring undergoes cleavage, and this is taken as the major criteria for inclusion in this review (although the exact nature of the enzymic ring-cleavage has not been confirmed in all cases discussed).The biodegradation of benzene, certain arenes, biphenyl and selected fused aromatic hydrocarbons, by single bacterial isolates, are dealt with in detail.

[1]  P. Chapman,et al.  The Microbial Oxidation of Aromatic Hydrocarbons , 1971 .

[2]  C. Cerniglia Microbial metabolism of polycyclic aromatic hydrocarbons. , 1984, Advances in applied microbiology.

[3]  D. Gibson,et al.  Bacterial Metabolism of para-and meta-Xylene: Oxidation of the Aromatic Ring , 1974, Journal of bacteriology.

[4]  M. J. van der Werf,et al.  Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase , 1990, Applied and environmental microbiology.

[5]  D. Gibson Microbial degradation of hydrocarbons , 1982 .

[6]  D. W. Ribbons,et al.  p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions , 1977, Journal of bacteriology.

[7]  D. Focht,et al.  Microbial transformations of styrene and [14C] styrene in soil and enrichment cultures , 1978, Applied and environmental microbiology.

[8]  T. Kakizaki,et al.  METABOLISM OF BENZENE , 1967 .

[9]  P J Chapman,et al.  Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis , 1990, Applied and environmental microbiology.

[10]  T. Leisinger,et al.  Microbial degradation of xenobiotics and recalcitrant compounds , 1981 .

[11]  D. Gibson,et al.  Bacterial Metabolism of para- and meta-Xylene: Oxidation of a Methyl Substituent , 1974, Journal of bacteriology.

[12]  Mark R. Smith,et al.  Catabolism of alkylbenzenes by Pseudomonas sp. NCIB 10643 , 1989, Applied Microbiology and Biotechnology.

[13]  T. Omori,et al.  Microbial Oxidation of α-Methylstyrene and β-Methylstyrene , 1974 .

[14]  D. Gibson,et al.  Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. , 1973, Biochemistry.

[15]  C. J. Duggleby,et al.  Purification and Some Properties of the 2-Hydroxy-6-oxohepta-2,4-dienoate Hydrolase (2-Hydroxymuconic Semialdehyde Hydrolase) Encoded by the TOL Plasmid pWW0 from Pseudomonas putida mt-2 , 1986 .

[16]  N. Mermod,et al.  Regulatory circuits controlling transcription of TOL plasmid operon encoding meta‐cleavage pathway for degradation of alkylbenzoates by Pseudomonas , 1987, Molecular microbiology.

[17]  D. Gibson,et al.  Incorporation of oxygen-18 into benzene by Pseudomonas putida. , 1970, Biochemistry.

[18]  M. Schell,et al.  Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon , 1986, Journal of bacteriology.

[19]  B. Speer,et al.  Naphthalene association and uptake in Pseudomonas putida , 1986, Journal of bacteriology.

[20]  J. Bollag,et al.  Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. , 1987, Microbiological reviews.

[21]  G. Bakker,et al.  Anaerobic degradation of aromatic compounds in the presence of nitrate , 1977 .

[22]  D. Catelani,et al.  Metabolism of biphenyl. Structure and physicochemical properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. , 1974, The Biochemical journal.

[23]  P. Barbieri,et al.  Isolation of a Pseudomonas stutzeri strain that degrades o-xylene , 1987, Applied and environmental microbiology.

[24]  G. Sayler,et al.  The TOL (pWW0) catabolic plasmid , 1989, Applied and environmental microbiology.

[25]  D. Lovley,et al.  Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15 , 1990, Applied and environmental microbiology.

[26]  R. Schwartz A novel reaction: meta hydroxylation of biphenyl by an actinomycete , 1981 .

[27]  E. Galli,et al.  The microbial degradation of phenylalkanes. 2-Phenylbutane, 3-phenylpentane, 3-phenyldodecane and 4-phenylheptane. , 1972, Biochemical Journal.

[28]  R. W. Stone,et al.  BACTERIAL OXIDATION OF BENZENE , 1961, Journal of bacteriology.

[29]  T. Omori,et al.  Enzymatic Dioxygenation of Biphenyl-2,3-diol and 3–Isopropylcatechol , 1986 .

[30]  C. Cerniglia,et al.  Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field , 1988, Applied and environmental microbiology.

[31]  R. Bayly,et al.  Pseudomonas putida Mutants Defective in the Metabolism of the Products of meta Fission of Catechol and Its Methyl Analogues , 1974, Journal of bacteriology.

[32]  G. Bestetti,et al.  Biotransformation of styrenes by a Pseudomonas putida , 1989, Applied Microbiology and Biotechnology.

[33]  K. Timmis,et al.  Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[34]  I. C. Gunsalus,et al.  Regulation of the nah and sal operons of plasmid NAH7: evidence for a new function in nahR. , 1986, Biochemical and biophysical research communications.

[35]  S. Dagley,et al.  CHAPTER 15 – Biochemistry of Aromatic Hydrocarbon Degradation in Pseudomonads , 1986 .

[36]  I. Shirley,et al.  A biotech route to polyphenylene , 1983 .

[37]  N. Dunn,et al.  Transmissible Plasmid Coding Early Enzymes of Naphthalene Oxidation in Pseudomonas putida , 1973, Journal of bacteriology.

[38]  D T Gibson,et al.  Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. , 1968, Biochemistry.

[39]  P. Williams,et al.  pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β‐ketoadipate pathway , 1987, Molecular microbiology.

[40]  K. Timmis,et al.  Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204 , 1986, Journal of bacteriology.

[41]  Mark R. Smith,et al.  Catabolism of biphenyl by Pseudomonas sp. NCIB 10643 and Nocardia sp. NCIB 10503 , 1989, Applied Microbiology and Biotechnology.

[42]  G. Bestetti,et al.  Plasmid-coded degradation of ethylbenzene and 1-phenylethanol in Pseudomonas fluorescens , 1984 .

[43]  A. Khan,et al.  Identification and localization of 3-phenylcatechol dioxygenase and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase genes of Pseudomonas putida and expression in Escherichia coli , 1990, Applied and environmental microbiology.

[44]  W. Evans,et al.  The microbial metabolism of biphenyl. , 1970, The Biochemical journal.

[45]  E. Arvin,et al.  Substrate interactions during aerobic biodegradation of benzene , 1989, Applied and environmental microbiology.

[46]  J. Bont,et al.  Metabolism ofStyrene Oxideand2-Phenylethanol inthe Styrene-Degrading , 1989 .

[47]  C. Sorlini,et al.  Metabolism of quaternary carbon compounds: 2,2-dimethylheptane and tertbutylbenzene , 1977, Applied and environmental microbiology.

[48]  A. Zehnder,et al.  Degradation 1,2-dimethylbenzene by Corynebacterium strain C125 , 2004, Antonie van Leeuwenhoek.

[49]  M. Schell Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Bont,et al.  Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X , 1986, Antonie van Leeuwenhoek.

[51]  P. Williams,et al.  The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. , 1972, European journal of biochemistry.

[52]  K. Hisatsuka,et al.  Isolation and Identification of Styrene Assimilating Bactiria , 1979 .

[53]  Mark R. Smith,et al.  The interactions of various aromatic substrates degraded by Pseudomonas sp. NCIB 10643: synergistic inhibition of growth by two compounds that serve as growth substrates , 2004, Applied Microbiology and Biotechnology.

[54]  R. W. Stone,et al.  Metabolism of p- and m-xylene by species of Pseudomonas. , 1968, Canadian journal of microbiology.

[55]  D. R. Durham,et al.  Recruitment of naphthalene dissimilatory enzymes for the oxidation of 1,4-dichloronaphthalene to 3,6-dichlorosalicylate, a precursor for the herbicide dicamba , 1987, Journal of bacteriology.

[56]  S. Ley,et al.  Microbial oxidation in synthesis: A six step perparation of (+)-pinitol from benzene , 1987 .

[57]  F. Sariaslani,et al.  Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. , 1974, Biochemical Journal.

[58]  D. Gibson,et al.  Oxidation of biphenyl by a Beijerinckia species. , 1973, Biochemical and biophysical research communications.

[59]  H. D. Simpson,et al.  Purification and some properties of a novel heat-stable cis-toluene dihydrodiol dehydrogenase. , 1987, The Biochemical journal.

[60]  D. Gibson Microbial degradation of organic compounds. , 1984 .

[61]  C. Sorlini,et al.  Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. , 1973, The Biochemical journal.

[62]  B. Axcell,et al.  The metabolism of benzene by bacteria. Purification and some properties of the enzyme cis-1,2-dihydroxycyclohexa-3,5-diene (nicotinamide adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase). , 1973, The Biochemical journal.

[63]  E. Galli,et al.  Styrene Catabolism by a Strain of Pseudomonas fluorescens. , 1983, Systematic and applied microbiology.

[64]  Gilbert S. Omenn,et al.  Biotechnology and Biodegradation , 1990 .

[65]  D. W. Ribbons,et al.  p-cymene pathway in Pseudomonas putida: initial reactions , 1977, Journal of bacteriology.

[66]  L. Jaenicke,et al.  Benzene metabolism of Moraxella species. , 1972, European journal of biochemistry.

[67]  T. Omori,et al.  The degradation of isopropylbenzen and isobutylbenzen by Pseudomonas sp. , 1975 .

[68]  D. W. Ribbons,et al.  The p-cymene pathway in Pseudomonas putida PL: isolation of a dihydrodiol accumulated by a mutant. , 1976, Biochemical and biophysical research communications.

[69]  D. Capone,et al.  Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries , 1988, Applied and environmental microbiology.

[70]  T. Omori,et al.  Purification and Some Properties of 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid(HOPDA) Reducing Enzyme from Pseudomonas cruciviae S93B1 Involved in the Degradation of Biphenyl(Biological Chemistry) , 1986 .

[71]  P. Chapman,et al.  Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid , 1981, Journal of bacteriology.

[72]  C. Sorlini,et al.  The metabolism of biphenyl by Pseudomonas putida. , 1971, Experientia.

[73]  K. Furukawa,et al.  Gene manipulation of catabolic activities for production of intermediates of various biphenyl compounds , 1988, Applied Microbiology and Biotechnology.

[74]  K. Shirai Catechol Production from Benzene through Reaction with Resting and Immobilized Cells of a Mutant Strain of Pseudomonas , 1987 .

[75]  M. W. Platt,et al.  The growth of Pseudomonas putida on m-toluic acid and on toluene in batch and in chemostat cultures , 1988, Applied Microbiology and Biotechnology.

[76]  Ronald A. Hites,et al.  The global distribution of polycyclic aromatic hydrocarbons in recent sediments , 1978 .

[77]  A. Nakazawa,et al.  Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants , 1980, Journal of bacteriology.

[78]  J. Foght,et al.  Mineralization of [14C]hexadecane and [14C]phenanthrene in crude oil: specificity among bacterial isolates. , 1990, Canadian journal of microbiology.

[79]  J. Tramper,et al.  Continuous production of cis-1,2-dihydroxycyclohexa-3,5-diene (cis-benzeneglycol) from benzene by a mutant of a benzene-degrading Pseudomonas sp. , 1988 .

[80]  I. C. Gunsalus,et al.  Nucleotide sequence of plasmid NAH7 gene nahR and DNA binding of the nahR product , 1988, Journal of bacteriology.

[81]  O. Amund,et al.  The degradation of 1-phenylalkanes by an oil-degrading strain of Acinetobacter lwoffi , 2004, Antonie van Leeuwenhoek.

[82]  Jürgen Klein,et al.  Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures , 2004, Applied Microbiology and Biotechnology.

[83]  P. Trudgill,et al.  The metabolism of 1-phenylethanol and acetophenone by Nocardia T5 and an Arthrobacter species. , 1978, European journal of biochemistry.

[84]  K. Shirai Screening of Microorganisms for Catechol Production from Benzene , 1986 .