An accurate relativistic effective core potential for excited states of Ag atom: An application for studying the absorption spectra of Agn and Agn+ clusters

A new 11-electron relativistic effective core potential (11e-RECP) for Ag atom based on correlated level of theory and the associated atomic orbital (AO) basis set have been derived which allows for an accurate determination of excited states. This has been verified by comparing the calculated excited states of the dimer with experimental data. Therefore, we applied the new 11e-RECP in the framework of the linear response equation-of-motion coupled-cluster (EOM-CC) method to determine absorption spectra of small Agn=2−4 and Agn=2−4+ clusters. The correlation treatment of 11 electrons per atom and calculations of transition energies and oscillator strengths in a large energy interval allowed us to investigate the influence of d-electrons on the spectroscopic patterns. We have found that d-electrons play a crucial role for accurate predictions of absorption spectra in spite of the fact that they are not always directly involved in the leading excitations contributing to the intense transitions. The calculat...

[1]  M. Moskovits,et al.  Ag5 is a planar trapezoidal molecule , 1998 .

[2]  J. Pittner,et al.  Ab initio predictions of structural and optical response properties of Na+n clusters: Interpretation of depletion spectra at low temperature , 1996 .

[3]  Schmitt,et al.  Temperature Dependence of the Optical Response of Small, Open Shell Sodium Clusters. , 1995, Physical review letters.

[4]  Gerd Ganteför,et al.  Electronic shells or molecular orbitals: Photoelectron spectra of Ag−n clusters , 1995 .

[5]  David M. Rayner,et al.  OPTICAL ABSORPTION SPECTRA OF AU7, AU9, AU11, AND AU13, AND THEIR CATIONS : GOLD CLUSTERS WITH 6, 7, 8, 9, 10, 11, 12, AND 13 S-ELECTRONS , 1994 .

[6]  I. G. Kaplan,et al.  A comparative theoretical study of stable geometries and energetic properties of small silver clusters , 1994 .

[7]  K. Meiwes-Broer,et al.  Blue shift of the Mie plasma frequency in Ag clusters and particles. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[9]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[10]  Fedrigo,et al.  Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. , 1993, Physical review. B, Condensed matter.

[11]  J. Koutecký,et al.  Compact formulation of multiconfigurational response theory. Applications to small alkali metal clusters , 1993 .

[12]  W. Demtröder,et al.  High‐resolution isotope selective laser spectroscopy of Ag2 molecules , 1993 .

[13]  J. Buttet,et al.  The optical absorption spectra of small silver clusters (n=5–11) embedded in argon matrices , 1992 .

[14]  W. Schulze,et al.  Electron impact ionization of silver clusters Agn,n≦36 , 1992 .

[15]  J. Pittner,et al.  Quantum molecular interpretation of the absorption spectra of Na5, Na6, and Na7 clusters , 1992 .

[16]  M. Kappes,et al.  Photodepletion probes of Na5, Na6, and Na7. Molecular dimensionality transition (2D→3D)? , 1992 .

[17]  M. Kappes,et al.  Electronic and geometric structure in silver clusters , 1992 .

[18]  K. Meiwes-Broer,et al.  Giant resonances in silver-cluster photofragmentation , 1992 .

[19]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[20]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements: Molecular test for M2 (M=Ag, Au) and MH (M=Ru, Os) , 1991 .

[21]  Piercarlo Fantucci,et al.  Quantum Chemistry of Small Clusters of Elements of Groups Ia, Ib, and IIa: Fundamental Concepts, Predictions, and Interpretation of Experiments , 1991 .

[22]  K. Balasubramanian,et al.  Electronic states of Cu+4, Ag+4, and Au+4: Interpretation of the optical spectra of Cu+4 , 1991 .

[23]  C. Bauschlicher,et al.  Theoretical study of the positive ions of the dimers and trimers of the group IB metals (Cu, Ag, and Au) , 1990 .

[24]  C. Bauschlicher,et al.  Theoretical study of the homonuclear tetramers and pentamers of the group IB metals (Cu, Ag, and Au) , 1990 .

[25]  Joe Ho,et al.  Photoelectron spectroscopy of metal cluster anions : Cu−n, Ag−n, and Au−n , 1990 .

[26]  K. Balasubramanian,et al.  Reply to "Comments on 'Binding energies and ionization potentials of the tetramers of copper, silver, and gold'" , 1990 .

[27]  C. Bauschlicher,et al.  Comments on "Binding energies and ionization potentials of the tetramers of copper, silver, and gold" , 1990 .

[28]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[29]  M. E. Ruiz,et al.  Nonadditivity and the stability of Ag3. A multireference configuration interaction study , 1990 .

[30]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[31]  K. Balasubramanian,et al.  Geometries and energy separations of low-lying electronic states of silver tetramer and copper tetramer , 1990 .

[32]  M. Gausa,et al.  Photoelectron spectroscopy of silver and palladium cluster anions. Electron delocalization versus, localization , 1990 .

[33]  Charles W. Bauschlicher,et al.  Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au) , 1989 .

[34]  M. Mostafavi,et al.  Size-dependent thermodynamic properties of silver aggregates. Simulation of the photographic development process , 1989 .

[35]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[36]  Michael A. Duncan,et al.  Vibronic spectroscopy and dynamics in the jet-cooled silver trimer , 1988 .

[37]  K. Balasubramanian,et al.  ELECTRONIC STATES AND POTENTIAL ENERGY SURFACES OF GOLD AND SILVER TRIMERS , 1988 .

[38]  S. Langhoff,et al.  AB Initio Studies of Transition Metal Systems , 1988 .

[39]  S. Walch A theoretical study of the excited states of Ag3 , 1987 .

[40]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[41]  H. Stoll,et al.  Quantum chemical investigations of the latent image formation , 1987 .

[42]  R. Arratia-Pérez,et al.  Bonding, optical, and magnetic properties of paramagnetic Ag41+ and Ag43+ clusters , 1987 .

[43]  Richard L. Martin AgH, Ag2, and AgO revisited: Basis set extensions , 1987 .

[44]  R. Arratia-Pérez,et al.  Dirac scattered‐wave study of trigonal bipyramidal silver clusters Ag5q+ (q=0, 2–4) , 1986 .

[45]  S. Langhoff,et al.  Theoretical studies of diatomic and triatomic systems containing the group IB atoms Cu, Ag, and Au , 1986 .

[46]  Richard L. Martin,et al.  All‐electron and valence‐electron calculations on AgH, Ag2, and AgO , 1985 .

[47]  W. C. Ermler,et al.  Ab initio calculations including relativistic effects for Ag2, Au2, AgAu, AgH, and AuH , 1985 .

[48]  W. Andreoni,et al.  Ground-state properties of very small silver clusters , 1985 .

[49]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[50]  H. Basch Electronic and geometric structural properties of the bare silver (Ag3) cluster and ions , 1981 .

[51]  H. Basch Electronic structure of heavy metal diatomics from ab initio relativistic effective core potential studies , 1980 .

[52]  C. Brown,et al.  The absorption spectrum of the Ag2 molecule , 1978 .

[53]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .

[54]  J. Bearden,et al.  Atomic energy levels , 1965 .