Anthropogenic Intensification of Surface Ocean Interannual pCO2 Variability

We use several global coupled atmosphere‐ocean‐biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5) to show that the global interannual variability of the sea surface pCO2 (calculated as 1σ) will increase by ∼64 ± 20% by 2040–2090 relative to the beginning of the industrial revolution under the RCP8.5 scenario. All models agree that the increase in variability is a consequence of a larger background pCO2 and a lower buffering capacity that enhance the response of pCO2 to the fluctuations of surface temperature (T) and dissolved inorganic carbon (DIC). The most skillful group of models under present‐day conditions shows a future global decrease in DIC fluctuations that will weaken the pCO2 interannual variability (IAV). The remaining uncertainties in the projected evolution of pCO2 variability regionally highlight the need for continuous carbon monitoring programs which will contribute to a better understanding of the oceanic carbon sink's response to increased green house emissions.

[1]  Xiaolong Chen,et al.  Can CMIP5 Earth System Models Reproduce the Interannual Variability of Air–Sea CO2 Fluxes over the Tropical Pacific Ocean? , 2019, Journal of Climate.

[2]  W. Müller,et al.  Predicting the variable ocean carbon sink , 2019, Science Advances.

[3]  T. Ilyina,et al.  Detecting Regional Modes of Variability in Observation‐Based Surface Ocean pCO2 , 2019, Geophysical Research Letters.

[4]  P. Landschützer,et al.  The Variable Southern Ocean Carbon Sink. , 2019, Annual review of marine science.

[5]  R. Allen,et al.  Strengthening of the Walker Circulation in recent decades and the role of natural sea surface temperature variability , 2018, Environmental Research Communications.

[6]  K. Rodgers,et al.  Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH Thermodynamic Drivers and the Influence on Sea‐Air CO2 Flux , 2018, Global Biogeochemical Cycles.

[7]  A. Timmermann,et al.  Drivers of future seasonal cycle changes in oceanic pCO2 , 2018, Biogeosciences.

[8]  A. Timmermann,et al.  El Niño–Southern Oscillation complexity , 2018, Nature.

[9]  M. Chevallier,et al.  Assessing the Decadal Predictability of Land and Ocean Carbon Uptake , 2018 .

[10]  J. Orr,et al.  Diverging seasonal extremes for ocean acidification during the twenty-first century , 2018, Nature Climate Change.

[11]  K. Six,et al.  Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2 , 2018, Nature Climate Change.

[12]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[13]  A. Eldering,et al.  Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission , 2017, Science.

[14]  Bin Wang,et al.  Assessment of Responses of Tropical Pacific Air–Sea CO2 Flux to ENSO in 14 CMIP5 Models , 2017 .

[15]  S. Kok,et al.  Interannual drivers of the seasonal cycle of CO 2 in the Southern Ocean , 2017 .

[16]  C. Sabine,et al.  Nonuniform ocean acidification and attenuation of the ocean carbon sink , 2017 .

[17]  R. Feely,et al.  Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean , 2017 .

[18]  J. Triñanes,et al.  The impact of changing wind speeds on gas transfer and its effect on global air‐sea CO2 fluxes , 2017 .

[19]  G. McKinley,et al.  Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink. , 2017, Annual review of marine science.

[20]  R. Feely,et al.  Variability and trends in surface seawater p CO 2 and CO 2 fl ux in the Paci fi c Ocean , 2017 .

[21]  Natural Variability , 2017, Encyclopedia of GIS.

[22]  P. Landschützer,et al.  Decadal variations and trends of the global ocean carbon sink , 2016 .

[23]  Jacqueline Boutin,et al.  A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) , 2016 .

[24]  Bin Wang,et al.  Global Air-Sea CO2Flux in 22 CMIP5 Models: Multiyear Mean and Interannual Variability* , 2016 .

[25]  A. Timmermann,et al.  Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean , 2016 .

[26]  B. Mcneil,et al.  Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle , 2016, Nature.

[27]  Uta Dresdner Co2 In Seawater Equilibrium Kinetics Isotopes , 2016 .

[28]  J. Shutler,et al.  Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM) , 2015 .

[29]  A. Lenton,et al.  Quantifying the influence of CO 2 seasonality on future aragonite undersaturation onset , 2015 .

[30]  A. Timmermann,et al.  ENSO and greenhouse warming , 2015 .

[31]  Raghu Murtugudde,et al.  Seasonal to decadal variations of sea surface pCO2 and sea‐air CO2 flux in the equatorial oceans over 1984–2013: A basin‐scale comparison of the Pacific and Atlantic Oceans , 2015 .

[32]  A. Timmermann,et al.  Combination Mode Dynamics of the Anomalous Northwest Pacific Anticyclone , 2015 .

[33]  F. Joos,et al.  Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle , 2015 .

[34]  J. Hauck,et al.  Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor , 2015, Geophysical research letters.

[35]  L. Bopp,et al.  Natural variability of CO2 and O2 fluxes: What can we learn from centuries‐long climate models simulations? , 2015 .

[36]  R. Murtugudde,et al.  Spatiotemporal characteristics of seasonal to multidecadal variability of pCO2 and air-sea CO2 fluxes in the equatorial Pacific Ocean , 2014 .

[37]  M. Heimann,et al.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme , 2014 .

[38]  Nicholas R. Bates,et al.  A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification , 2014 .

[39]  Taro Takahashi,et al.  Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO2 and pH , 2014 .

[40]  Christoph Heinze,et al.  Long-term surface pCO2 trends from observations and models , 2014 .

[41]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[42]  Scott C. Doney,et al.  Twentieth-Century Oceanic Carbon Uptake and Storage in CESM1(BGC)* , 2013 .

[43]  T. Bracegirdle,et al.  Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response , 2013 .

[44]  Jacqueline Boutin,et al.  Surface Ocean CO2 Atlas (SOCAT) gridded data products , 2012 .

[45]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[46]  K. Rodgers,et al.  A mechanistic account of increasing seasonal variations in the rate of ocean uptake of anthropogenic carbon , 2010 .

[47]  F. Morel,et al.  Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity , 2010 .

[48]  Taro Takahashi,et al.  Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships , 2010 .

[49]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[50]  N. Bindoff,et al.  Impacts of climate change on the subduction of mode and intermediate water masses in the Southern Ocean. , 2009 .

[51]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[52]  J. Sarmiento,et al.  A wintertime uptake window for anthropogenic CO2 in the North Pacific , 2008 .

[53]  S. Doney,et al.  Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode , 2007 .

[54]  M. Follows,et al.  Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability , 2006 .

[55]  R. Feely,et al.  Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean , 2006 .

[56]  G. Vecchi,et al.  Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing , 2006, Nature.

[57]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[58]  Galen A. McKinley,et al.  Mechanisms of air‐sea CO2 flux variability in the equatorial Pacific and the North Atlantic , 2004 .

[59]  Jacqueline Boutin,et al.  Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2‐SST relationships , 2003 .

[60]  Jacqueline Boutin,et al.  Seasonal and interannual variability of CO2 in the equatorial Pacific , 2002 .

[61]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[62]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[63]  G. Madec,et al.  Interannual variability of the oceanic sink of CO2 from 1979 through 1997 , 2000 .

[64]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[65]  Taro Takahashi,et al.  Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study , 1993 .