Efficiently Packing Circles into a Larger Containing Circle

The circles packing problem consists in placing a set of circles into a larger containing circle without overlap. The objective is to determine the smallest radius of the containing circle as well as the coordinates of the center of each given circle. Lacking powerful optimization method is the key obstacle to solve this problem. A novel heuristic global optimization method, energy landscape paving (ELP) which combines core ideas from energy surface deformation and taboo search, is introduced. By giving some critical revisions to the ELP method and incorporating new configuration update strategy into it, an improved energy landscape paving (IELP) algorithm is put forward for the circles packing problem. The effectiveness of the algorithm is demonstrated through a set of typical instances taken from the literature.