Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose

[1]  Tero Aittokallio,et al.  Early metabolic markers identify potential targets for the prevention of type 2 diabetes , 2017, Diabetologia.

[2]  T. Hansen,et al.  Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels , 2017, Diabetologia.

[3]  Ashutosh Kumar Singh,et al.  Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, Lancet.

[4]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[5]  L. Liang,et al.  Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study , 2016, Diabetes Care.

[6]  Frank B Hu,et al.  Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis , 2016, Diabetes Care.

[7]  M. M. Rahman,et al.  Worldwide trends in diabetes since 1980 : pooled analysis of 751 population-based measurement studies with over 4 . 4 million participants , 2016 .

[8]  M. Pirinen,et al.  Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA , 2016, Nature Communications.

[9]  Thomas J. Wang,et al.  Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program , 2016, Diabetes.

[10]  E. Barrett-Connor,et al.  Long-term Effects of Lifestyle Intervention or Metformin on Diabetes Development and Microvascular Complications: the DPP Outcomes Study , 2015, The lancet. Diabetes & endocrinology.

[11]  V. Mohan,et al.  Incidence of Diabetes and Prediabetes and Predictors of Progression Among Asian Indians: 10-Year Follow-up of the Chennai Urban Rural Epidemiology Study (CURES) , 2015, Diabetes Care.

[12]  David S. Wishart,et al.  MetaboAnalyst 3.0—making metabolomics more meaningful , 2015, Nucleic Acids Res..

[13]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[14]  Wanchang Lin,et al.  Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. , 2015, Clinical chemistry.

[15]  Thomas J. Wang,et al.  Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes , 2014, Diabetes Care.

[16]  R. Vasan,et al.  2-Aminoadipic acid is a biomarker for diabetes risk. , 2013, The Journal of clinical investigation.

[17]  A. Butterworth,et al.  Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data , 2013, Genetic epidemiology.

[18]  Jussi Paananen,et al.  Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes , 2013, Diabetes.

[19]  A. Peters,et al.  Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach , 2013, Diabetes.

[20]  Wolfgang Rathmann,et al.  Prediabetes: a high-risk state for diabetes development , 2012, The Lancet.

[21]  C. Newgard Interplay between lipids and branched-chain amino acids in development of insulin resistance. , 2012, Cell metabolism.

[22]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[23]  V. Mootha,et al.  Metabolite profiles and the risk of developing diabetes , 2011, Nature Medicine.

[24]  K. Park,et al.  Hemoglobin A1c as a Diagnostic Tool for Diabetes Screening and New-Onset Diabetes Prediction , 2011, Diabetes Care.

[25]  P. Toth Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans , 2011 .

[26]  Svati H Shah,et al.  A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. , 2009, Cell metabolism.

[27]  Ru Wei,et al.  Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity , 2008, Molecular systems biology.

[28]  Ralph B D'Agostino,et al.  Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. , 2007, Archives of internal medicine.

[29]  D. Pereg,et al.  Normal fasting plasma glucose levels and type 2 diabetes in young men. , 2005, The New England journal of medicine.

[30]  G. Kikuchi The glycine cleavage system: Composition, reaction mechanism, and physiological significance , 1973, Molecular and Cellular Biochemistry.

[31]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[32]  S. Fowler,et al.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. , 2002 .

[33]  J M Dekker,et al.  Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. , 2001, JAMA.

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[36]  W. Kannel,et al.  An investigation of coronary heart disease in families. The Framingham offspring study. , 1979, American journal of epidemiology.

[37]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.