Automatic segmentation and shape analysis of human hippocampus in Alzheimer's disease

The aim of this thesis is to investigate the shape change in hippocampus due to the atrophy in Alzheimer’s disease (AD). To this end, specific algorithms and methodologies were developed to segment the hippocampus from structural magnetic resonance (MR) images and model variations in its shape. We use a multi-atlas based segmentation propagation approach for the segmentation of hippocampus which has been shown to obtain accurate parcellation of brain structures. We developed a supervised method to build a population specific atlas database, by propagating the parcellations from a smaller generic atlas database. Well segmented images are inspected and added to the set of atlases, such that the segmentation capability of the atlas set may be enhanced. The population specific atlases are evaluated in terms of the agreement among the propagated labels when segmenting new cases. Compared with using generic atlases, the population specific atlases obtain a higher agreement when dealing with images from the target population. Atlas selection is used to improve segmentation accuracy. In addition to the conventional selection by image similarity ranking, atlas selection based on maximum marginal relevance (MMR) re-ranking and least angle regression (LAR) sequence are developed for atlas selection. By taking the redundancy among atlases into consideration, diversity criteria are shown to be more efficient in atlas selection which is applicable in the situation where the number of atlases to be fused is limited by the computational resources. Given the segmented hippocampal volumes, statistical shape models (SSMs) of hippocampi are built on the samples to model the shape variation among the population. The correspondence across the training samples of hippocampi is established by a groupwise optimization of the parameterized shape surfaces. The spherical parameterization of the hippocampal surfaces are flatten to facilitate the reparameterization and interpolation. The reparameterization is regularized by viscous fluid, which is solved by a fast implementation based on discrete sine transform. In order to use the hippocampal SSM to describe the shape of an unseen hippocampal surface, we developed a shape parameter estimator based on the expectationmaximization iterative closest points (EM-ICP) algorithm. A symmetric data term is included to achieve the inverse consistency of the transformation between the model and the shape, which gives more accurate reconstruction of the shape from the model. The shape prior modeled by the SSM is used in the maximum a posteriori estimation of the shape parameters, which is shown to enforce the smoothness and avoid the effect of over-fitting. In the study of the hippocampus in AD, we use the SSM to model the hippocampal shape change between the healthy control subjects and patients diagnosed with AD. We identify the regions affected by the atrophy in AD by assessing the spatial difference between the control and AD groups at each corresponding landmark. Localized shape analysis is performed on the regions exhibiting significant inter-group difference, which is shown to improve the discrimination ability of the principal component analysis (PCA) based SSM. The principal components describing the localized shape variability among the population are also shown to display stronger correlation with the decline of episodic memory scores linked to the pathology of hippocampus in AD.

[1]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[2]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[3]  Nick C Fox,et al.  Volumetric MRI and cognitive measures in Alzheimer disease , 2008, Journal of Neurology.

[4]  W. Markesbery,et al.  Hippocampal volume as an index of Alzheimer neuropathology: Findings from the Nun Study , 2002, Neurology.

[5]  Rhodri H. Davies,et al.  Learning Shape: Optimal Models for Analysing Natural Variability , 2004 .

[6]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[7]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[8]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[9]  J. Wegiel,et al.  Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease , 1998, Brain Research.

[10]  Timothy F. Cootes,et al.  Shape Discrimination in the Hippocampus Using an MDL Model , 2003, IPMI.

[11]  Nick C Fox,et al.  The clinical use of structural MRI in Alzheimer disease , 2010, Nature Reviews Neurology.

[12]  Claus Hamann,et al.  Auguste D and Alzheimer's disease , 1997, The Lancet.

[13]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[14]  Dominique Hasboun,et al.  Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease , 2007, NeuroImage.

[15]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[16]  Manuel Graña,et al.  Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks. , 2003, Magnetic resonance imaging.

[17]  Takeo Kanade,et al.  3-d deformable registration using a statistical atlas with applications in medicine , 1999 .

[18]  Vladimir S. Petrovic,et al.  Automatic Segmentation of the Caudate Nuclei using Active Appearance Models , 2007 .

[19]  Hamid Soltanian-Zadeh,et al.  A discrete curvature-based deformable surface model with application to segmentation of volumetric images , 2002, IEEE Transactions on Information Technology in Biomedicine.

[20]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[21]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[22]  P. O'higgins,et al.  Sexual dimorphism in hominoids: further studies of craniofacial shape differences in Pan, Gorilla and Pongo , 1993 .

[23]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Patrick Pérez,et al.  Constrained subspace modeling , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[25]  Nick C Fox,et al.  Automated Hippocampal Segmentation by Regional Fluid Registration of Serial MRI: Validation and Application in Alzheimer's Disease , 2001, NeuroImage.

[26]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[27]  D. Louis Collins,et al.  Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation , 2010, MICCAI.

[28]  Christian R. Shelton,et al.  Morphable Surface Models , 2000, International Journal of Computer Vision.

[29]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[30]  Simon K. Warfield,et al.  Using Frankenstein's Creature Paradigm to Build a Patient Specific Atlas , 2009, MICCAI.

[31]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[32]  A. Alzheimer über eigenartige Krankheitsfälle des späteren Alters , 1911 .

[33]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[34]  L. Breiman OUT-OF-BAG ESTIMATION , 1996 .

[35]  Michael A Yassa,et al.  A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe , 2009, NeuroImage.

[36]  H. W. Clark,et al.  Abstinent chronic crack‐cocaine and crackcocaine/alcohol abusers evidence normal hippocampal volumes on MRI despite persistent cognitive impairments , 1998, Addiction biology.

[37]  Michael I. Miller,et al.  Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging☆ , 2003, NeuroImage.

[38]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[39]  D. Louis Collins,et al.  Hippocampal shape analysis using medial surfaces , 2005, NeuroImage.

[40]  Jeffrey A. Fessler,et al.  Knowledge-based deformable surface model with application to segmentation of brain structures in MRI , 2001, SPIE Medical Imaging.

[41]  Nick C. Fox,et al.  Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates , 2004, NeuroImage.

[42]  F. Shi,et al.  Hippocampal Shape Analysis of Alzheimer Disease Based on Machine Learning Methods , 2007, American Journal of Neuroradiology.

[43]  M. Bobinski,et al.  The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease , 1999, Neuroscience.

[44]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Rasmus Larsen,et al.  Q-MAF Shape Decomposition , 2001, MICCAI.

[46]  Sylvain Prima,et al.  An Efficient EM-ICP Algorithm for Symmetric Consistent Non-linear Registration of Point Sets , 2010, MICCAI.

[47]  Amity E. Green,et al.  3D comparison of low, intermediate, and advanced hippocampal atrophy in MCI , 2010, Human brain mapping.

[48]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[49]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[50]  L. McEvoy,et al.  Quantitative structural MRI for early detection of Alzheimer’s disease , 2010, Expert review of neurotherapeutics.

[51]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[52]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[53]  Alain Pitiot,et al.  Expert knowledge-guided segmentation system for brain MRI , 2003, NeuroImage.

[54]  Y. Yuan,et al.  Fluorodeoxyglucose–Positron-Emission Tomography, Single-Photon Emission Tomography, and Structural MR Imaging for Prediction of Rapid Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis , 2008, American Journal of Neuroradiology.

[55]  Nicolas Cherbuin,et al.  Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation , 2011, NeuroImage.

[56]  Dominic M. Walsh,et al.  Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease , 2004, Neuron.

[57]  D. Blacker,et al.  Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database , 2007, Nature Genetics.

[58]  John C. Gower,et al.  Procrustes methods , 2010 .

[59]  Carlos E. Kenig,et al.  Boundary value problems for the systems of elastostatics in Lipschitz domains , 1988 .

[60]  N. Schuff,et al.  Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease , 2010, Human brain mapping.

[61]  Yalin Wang,et al.  Disease classification with hippocampal shape invariants , 2009, Hippocampus.

[62]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[63]  R. Kikinis,et al.  An Automated Registration Algorithm for Measuring MRI Subcortical Brain Structures , 1997, NeuroImage.

[64]  N. Schuff,et al.  Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia , 2002, Journal of magnetic resonance imaging : JMRI.

[65]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[66]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[67]  N. Ayache,et al.  Computation of a probabilistic statistical shape model in a maximum-a-posteriori framework. , 2009, Methods of information in medicine.

[68]  Daniel Rueckert,et al.  Comparison and Evaluation of Segmentation Techniques for Subcortical Structures in Brain MRI , 2008, MICCAI.

[69]  Heinz Hügli,et al.  A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[70]  Olivier Salvado,et al.  Supervised method to build an atlas database for multi-atlas segmentation-propagation , 2010, Medical Imaging.

[71]  Christopher J. Taylor,et al.  Kernel Principal Component Analysis and the construction of non-linear Active Shape Models , 2001, BMVC.

[72]  Josien P. W. Pluim,et al.  Non-rigid registration based active appearance models for 3D medical image segmentation , 2004 .

[73]  S. Vadlamani On the Diffusion of Shape , 2007 .

[74]  Alejandro F. Frangi,et al.  Detecting Regional Abnormal Cardiac Contraction in Short-Axis MR Images Using Independent Component Analysis , 2004, MICCAI.

[75]  J. Mazziotta,et al.  Automated image registration , 1993 .

[76]  Laurent D. Cohen,et al.  Minimal Paths in 3D Images and Application to Virtual Endoscopy , 2000, ECCV.

[77]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[78]  J. Troncoso,et al.  Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease , 1994, The Lancet.

[79]  C. Small The statistical theory of shape , 1996 .

[80]  J. C. Gower,et al.  Projection Procrustes problems , 2004 .

[81]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[82]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[83]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[84]  Daniel Rueckert,et al.  An evaluation of four automatic methods of segmenting the subcortical structures in the brain , 2009, NeuroImage.

[85]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[86]  Robert E. Mahony,et al.  The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..

[87]  Amity E. Green,et al.  Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls , 2009, Human brain mapping.

[88]  M. Roth,et al.  The Association Between Quantitative Measures of Dementia and of Senile Change in the Cerebral Grey Matter of Elderly Subjects , 1968, British Journal of Psychiatry.

[89]  J. Baron,et al.  In Vivo Mapping of Gray Matter Loss with Voxel-Based Morphometry in Mild Alzheimer's Disease , 2001, NeuroImage.

[90]  Nick C. Fox,et al.  A meta-analysis of hippocampal atrophy rates in Alzheimer's disease , 2009, Neurobiology of Aging.

[91]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[92]  M. Roth,et al.  Correlation between Scores for Dementia and Counts of ‘Senile Plaques’ in Cerebral Grey Matter of Elderly Subjects , 1966, Nature.

[93]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[94]  Sébastien Ourselin,et al.  Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps , 2009, Medical Image Anal..

[95]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[96]  Paul M. Thompson,et al.  Localized Components Analysis , 2007, IPMI.

[97]  Paul M. Thompson,et al.  Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment , 2005, NeuroImage.

[98]  Stéphane Lavallée,et al.  Building a Complete Surface Model from Sparse Data Using Statistical Shape Models: Application to Computer Assisted Knee Surgery System , 1998, MICCAI.

[99]  Aaron F. Bobick,et al.  Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets , 2007, IEEE Transactions on Medical Imaging.

[100]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[101]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[102]  M. Goedert,et al.  A Century of Alzheimer's Disease , 2006, Science.

[103]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[104]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[105]  J. Bremner,et al.  MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed , 2005, Molecular Psychiatry.

[106]  G. Christensen,et al.  Hippocampal MR imaging morphometry by means of general pattern matching. , 1996, Radiology.

[107]  P. Revell,et al.  Morphometry , 1983 .

[108]  H. Benali,et al.  Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI , 2009, Hippocampus.

[109]  Kiralee M. Hayashi,et al.  3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease. , 2006, Brain : a journal of neurology.

[110]  Shun Xu,et al.  Statistical group differences in anatomical shape analysis using Hotelling T2 metric , 2007, SPIE Medical Imaging.

[111]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[112]  Marie Chupin,et al.  Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging , 2009, NeuroImage.

[113]  Nathan D. Cahill,et al.  FAST FLUID REGISTRATION WITH DIRICHLET BOUNDARY CONDITIONS: A TRANSFORM-BASED APPROACH , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[114]  Paul M. Thompson,et al.  Mapping hippocampal and ventricular change in Alzheimer disease , 2004, NeuroImage.

[115]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[116]  P. Scheltens,et al.  Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. , 1992, Journal of neurology, neurosurgery, and psychiatry.

[117]  D. Segal Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) , 2010 .

[118]  Ola Weistrand Global Shape Description of Digital Objects , 2005 .

[119]  T. Bliss,et al.  Lamellar organization of hippocampal excitatory pathways , 1971, Experimental Brain Research.

[120]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[121]  Kader Karli Oguz,et al.  Hippocampal atrophy correlates with the severity of cognitive decline , 2006, International Psychogeriatrics.

[122]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[123]  Andrew W. Fitzgibbon Robust registration of 2D and 3D point sets , 2003, Image Vis. Comput..

[124]  N. Lassen,et al.  Multi-infarct dementia. A cause of mental deterioration in the elderly. , 1974, Lancet.

[125]  M. Weiner,et al.  Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields , 2009, Hippocampus.

[126]  Clifford R. Jack,et al.  Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage , 2008, NeuroImage.

[127]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[128]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[129]  W. Eric L. Grimson,et al.  Logarithm Odds Maps for Shape Representation , 2006, MICCAI.

[130]  Nick C Fox,et al.  A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. , 2003, Archives of neurology.

[131]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[132]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[133]  Christopher J. Taylor,et al.  Automatic construction of eigenshape models by direct optimization , 1998, Medical Image Anal..

[134]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[135]  H Soltanian-Zadeh,et al.  A 3D deformable surface model for segmentation of objects from volumetric data in medical images. , 1998, Computers in biology and medicine.

[136]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[137]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[138]  F L Bookstein,et al.  Biometrics, biomathematics and the morphometric synthesis. , 1996, Bulletin of mathematical biology.

[139]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[140]  Wiro J. Niessen,et al.  Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts , 2008, NeuroImage.

[141]  J. Huxley Problems of relative growth , 1932 .

[142]  P. Jolicoeur,et al.  Size and shape variation in the painted turtle. A principal component analysis. , 1960, Growth.

[143]  Frederik Barkhof,et al.  Whole-brain atrophy rate and CSF biomarker levels in MCI and AD: A longitudinal study , 2010, Neurobiology of Aging.

[144]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[145]  Christopher J. Taylor,et al.  Statistical models of shape - optimisation and evaluation , 2008 .

[146]  Jean-Philippe Thirion,et al.  Non-rigid matching using demons , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[147]  D. Louis Collins,et al.  Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion , 2010, NeuroImage.

[148]  Rossana Ganzola,et al.  Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla. , 2008, Brain : a journal of neurology.

[149]  Daniel Rueckert,et al.  Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[150]  Michael I. Miller,et al.  Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly , 2005, NeuroImage.

[151]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[152]  S. Duchesne,et al.  Appearance-Based Segmentation of Medial Temporal Lobe Structures , 2002, NeuroImage.

[153]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[154]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[155]  Norbert Schuff,et al.  Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease , 2010, NeuroImage.

[156]  Baigalmaa Tsagaan,et al.  An Automated Segmentation Method of Kidney Using Statistical Information , 2002, MICCAI.

[157]  M. Roth,et al.  Observations on the brains of non-demented old people. , 1968, Journal of the neurological sciences.

[158]  Nicolas Cherbuin,et al.  Hippocampal shape analysis for Alzheimer's disease using an efficient hypothesis test and regularized discriminative deformation , 2009, Hippocampus.

[159]  Benoit M. Dawant,et al.  Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects , 1999, IEEE Transactions on Medical Imaging.

[160]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[161]  Andrew F. Rex,et al.  Resource Letter MD-1: Maxwell's Demon , 1990 .

[162]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[163]  Daniel Rueckert,et al.  Segmentation of Brain MRI in Young Children , 2007, MICCAI.

[164]  Dinggang Shen,et al.  Hierarchical active shape models, using the wavelet transform , 2003, IEEE Transactions on Medical Imaging.

[165]  Clifford R. Jack,et al.  Alzheimer's disease diagnosis in individual subjects using structural MR images: Validation studies , 2008, NeuroImage.

[166]  Arthur W. Toga,et al.  Defining the human hippocampus in cerebral magnetic resonance images—An overview of current segmentation protocols , 2009, NeuroImage.

[167]  C. Jack,et al.  β‐amyloid burden is not associated with rates of brain atrophy , 2008, Annals of neurology.

[168]  C. Jack,et al.  Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia , 2002, Neurology.

[169]  Victor L. Villemagne,et al.  Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer's disease , 2005, Journal of Clinical Neuroscience.

[170]  T Kanade,et al.  Techniques for fast and accurate intrasurgical registration. , 1995, Journal of image guided surgery.

[171]  G. Chételat,et al.  Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry , 2008, Neuropsychologia.

[172]  S. Davis,et al.  Generation of Aggregated β-Amyloid in the Rat Hippocampus Impairs Synaptic Transmission and Plasticity and Causes Memory Deficits , 2001, The Journal of Neuroscience.

[173]  James S. Duncan,et al.  Neighbor-constrained segmentation with level set based 3-D deformable models , 2004, IEEE Transactions on Medical Imaging.

[174]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[175]  J. Kril,et al.  Variation in hippocampal neuron number with age and brain volume. , 1998, Cerebral cortex.

[176]  C. Jack,et al.  MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD , 2003, Neurology.

[177]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[178]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[179]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[180]  Daniel Rueckert,et al.  Classifier Selection Strategies for Label Fusion Using Large Atlas Databases , 2007, MICCAI.

[181]  Rasmus R. Paulsen,et al.  Shape Modelling Using Markov Random Field Restoration of Point Correspondences , 2003, IPMI.

[182]  Evan Fletcher,et al.  Spatially localized hippocampal shape analysis in late‐life cognitive decline , 2009, Hippocampus.

[183]  Mark Jenkinson,et al.  Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): Method and validation on clinical data , 2011, NeuroImage.

[184]  M. Murphy,et al.  Alzheimer's disease and the amyloid-beta peptide. , 2010, Journal of Alzheimer's disease : JAD.

[185]  J. Brewer,et al.  High-throughput, Fully Automated Volumetry for Prediction of MMSE and CDR Decline in Mild Cognitive Impairment , 2009, Alzheimer disease and associated disorders.

[186]  Christopher J. Taylor,et al.  A Method of Automated Landmark Generation for Automated 3D PDM Construction , 1998, BMVC.

[187]  Philip Scheltens,et al.  Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment , 2004, Neurology.

[188]  P. Scheltens,et al.  Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria , 2007, The Lancet Neurology.

[189]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[190]  Olivier Salvado,et al.  Addressing population aging and Alzheimer's disease through the Australian Imaging Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative , 2010, Alzheimer's & Dementia.

[191]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[192]  C. Jack,et al.  MRI correlates of neurofibrillary tangle pathology at autopsy , 2008, Neurology.

[193]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[194]  Alex M Thomson,et al.  Characterization of Neurons in the CA2 Subfield of the Adult Rat Hippocampus , 2007, The Journal of Neuroscience.

[195]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[196]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[197]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[198]  R. Hu Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) , 2003 .

[199]  1 The GloBAl eCoNomiC impACT oF demeNTiA Alzheimer ’ s diseAse internAtionAl World Alzheimer report 2010 the GlobAl economic impAct of dementiA , 2022 .

[200]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[201]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[202]  Lewis D. Griffin,et al.  Zen and the art of medical image registration: correspondence, homology, and quality , 2003, NeuroImage.

[203]  P. Falkai,et al.  Amygdala-hippocampal atrophy and memory performance in dementia of Alzheimer type. , 1997, Dementia and geriatric cognitive disorders.

[204]  Carlos Ortiz-de-Solorzano,et al.  Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data , 2009, IEEE Transactions on Medical Imaging.

[205]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[206]  R. Henson A Mini-Review of fMRI Studies of Human Medial Temporal Lobe Activity Associated with Recognition Memory , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[207]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[208]  Baigalmaa Tsagaan,et al.  Segmentation of kidney by using a deformable model , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[209]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[210]  Paul M. Thompson,et al.  In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease , 2009, Journal of Neurology.

[211]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[212]  Kalle Åström,et al.  Minimizing the description length using steepest descent , 2003, BMVC.

[213]  C. Jack,et al.  Memory and MRI-based hippocampal volumes in aging and AD , 2000, Neurology.

[214]  Can Ceritoglu,et al.  Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[215]  Mark A. van Buchem,et al.  GAMEs: Growing and adaptive meshes for fully automatic shape modeling and analysis , 2007, Medical Image Anal..

[216]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[217]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[218]  Chunshui Yu,et al.  Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta‐analyses of MRI studies , 2009, Hippocampus.

[219]  Paul A. Yushkevich,et al.  Continuous medial representations for geometric object modeling in 2D and 3D , 2003, Image Vis. Comput..

[220]  Nick C Fox,et al.  Neuroimaging in Dementia , 2011, Clinical Neuroradiology.

[221]  Nick C Fox,et al.  Neuropsychological correlates of whole brain atrophy in Alzheimer's disease , 2008, Neuropsychologia.

[222]  A. Dale,et al.  Multi-modal imaging predicts memory performance in normal aging and cognitive decline , 2010, Neurobiology of Aging.

[223]  Masayuki Nakajima,et al.  Spherical Wavelet Descriptors for Content-based 3D Model Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[224]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[225]  Kevin J. Parker,et al.  A novel volumetric feature extraction technique, with applications to MR images , 1995, Proceedings., International Conference on Image Processing.

[226]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[227]  C. Jack,et al.  Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD , 2004, Neurology.

[228]  S. Resnick,et al.  Measuring Size and Shape of the Hippocampus in MR Images Using a Deformable Shape Model , 2002, NeuroImage.

[229]  David J. Hawkes,et al.  Incorporating connected region labelling into automated image registration using mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[230]  Pierre Hellier,et al.  Segmentation of brain 3D MR images using level sets and dense registration , 2001, Medical Image Anal..

[231]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[232]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[233]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[234]  Anne Corbett,et al.  Alzheimer's disease , 2011, The Lancet.

[235]  Paul M. Thompson,et al.  Hippocampal shape analysis in Alzheimer’s disease: A population-based study , 2007, NeuroImage.

[236]  D R Fish,et al.  Methods for normalization of hippocampal volumes measured with MR. , 1995, AJNR. American journal of neuroradiology.

[237]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[238]  Richard Camicioli,et al.  Aging hippocampus and amygdala , 2008, Neuroreport.

[239]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[240]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[241]  F Andermann,et al.  Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging , 1992, Neurology.

[242]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[243]  Martin Styner,et al.  Medial Models Incorporating Object Variability for 3D Shape Analysis , 2001, IPMI.

[244]  Frans Vos,et al.  A statistical shape model without using landmarks , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[245]  Alejandro F. Frangi,et al.  Automatic 3D ASM Construction via Atlas-Based Landmarking and Volumetric Elastic Registration , 2001, IPMI.

[246]  Rich Caruana,et al.  On Feature Selection, Bias-Variance, and Bagging , 2009, ECML/PKDD.

[247]  Torsten Rohlfing,et al.  Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation , 2004, IEEE Transactions on Medical Imaging.

[248]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[249]  C. Berr,et al.  Author manuscript, published in "European Journal of Neurology 2010;17(2):252-9" DOI: 10.1111/j.1468-1331.2009.02783.x How many dementia cases in France and Europe? Alternative projections and scenarios 2010-2050 , 2010 .

[250]  Nick C Fox,et al.  Assessing the onset of structural change in familial Alzheimer's disease , 2003, Annals of neurology.

[251]  G. Busatto,et al.  Voxel-based morphometry in Alzheimer’s disease , 2008, Expert review of neurotherapeutics.

[252]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[253]  E. Callaway,et al.  Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3‐dimensional reconstruction , 2005, The Journal of comparative neurology.

[254]  Sebastien Ourselin,et al.  Clinical application of measurement of hippocampal atrophy in degenerative dementias , 2009, Hippocampus.

[255]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[256]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[257]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[258]  Michaël Sdika,et al.  Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote , 2010, Medical Image Anal..

[259]  J. Bohl,et al.  Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease , 2002, Acta Neuropathologica.

[260]  S. Joshi,et al.  Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus , 2000, Neurology.

[261]  Brian B. Avants,et al.  A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation , 2011, NeuroImage.

[262]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[263]  B. Knowlton,et al.  A Dissociation of Encoding and Retrieval Processes in the Human Hippocampus , 2005, The Journal of Neuroscience.

[264]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[265]  Padraig Cunningham,et al.  Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse it Gets , 2004, SGAI Conf..

[266]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[267]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[268]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[269]  D'arcy W. Thompson On growth and form i , 1943 .

[270]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[271]  Frederik Barkhof,et al.  Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. , 2008, Radiology.

[272]  Stephen A. Martucci,et al.  Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..

[273]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[274]  Anders M. Dale,et al.  Regional Shape Abnormalities in Mild Cognitive Impairment and Alzheimer's Disease , 2009, NeuroImage.

[275]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[276]  F L Bookstein,et al.  Linear machinery for morphological distortion. , 1978, Computers and biomedical research, an international journal.

[277]  automatic classification of , 2009 .

[278]  Nick C Fox,et al.  Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral , 2007, Neurobiology of Aging.

[279]  Marine Fouquet,et al.  Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence , 2010, NeuroImage.

[280]  Katja Bühler,et al.  MDL Spline Models: Gradient and Polynomial Reparameterisations , 2005, BMVC.

[281]  Martin Styner,et al.  Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. , 2006, The insight journal.

[282]  G. Frisoni,et al.  Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry , 2002, Journal of neurology, neurosurgery, and psychiatry.

[283]  L. V. Valen,et al.  Human Anatomy , 1899, Nature.

[284]  James S. Duncan,et al.  3D image segmentation of deformable objects with joint shape-intensity prior models using level sets , 2004, Medical Image Anal..

[285]  James F. Malec,et al.  Mayo's older americans normative studies: Updated AVLT norms for ages 56 to 97 , 1992 .

[286]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[287]  S. Joshi,et al.  Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. , 2000, Radiology.

[288]  W. H. Mcmenemey,et al.  THE STRUCTURE OF AMMON'S HORN , 1969 .

[289]  Benoit M. Dawant,et al.  Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. II. Validation on severely atrophied brains , 1999, IEEE Transactions on Medical Imaging.

[290]  Christopher J. Taylor,et al.  Groupwise surface correspondence by optimization: Representation and regularization , 2008, Medical Image Anal..

[291]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[292]  F. Bookstein,et al.  The Measurement of Biological Shape and Shape Change. , 1980 .

[293]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[294]  Nick Barnes,et al.  Hippocampal Shape Classification Using Redundancy Constrained Feature Selection , 2010, MICCAI.

[295]  K. Kolle,et al.  Psychiatrie: Ein Lehrbuch fur Studierende und Arzte , 1961 .

[296]  G. Frisoni,et al.  Hippocampal MRI volumetry in cognitively discordant monozygotic twin pairs. , 2004, Journal of neurology, neurosurgery, and psychiatry.

[297]  Alberto Beltramello,et al.  A comparison between the accuracy of voxel‐based morphometry and hippocampal volumetry in Alzheimer's disease , 2004, Journal of magnetic resonance imaging : JMRI.

[298]  Michael I. Miller,et al.  Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type , 2006, NeuroImage.

[299]  N. Schuff,et al.  Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease , 2001, Journal of neurology, neurosurgery, and psychiatry.

[300]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[301]  Sébastien Ourselin,et al.  Reconstructing a 3D structure from serial histological sections , 2001, Image Vis. Comput..

[302]  J. Gower Generalized procrustes analysis , 1975 .

[303]  Mert R. Sabuncu,et al.  A Generative Model for Image Segmentation Based on Label Fusion , 2010, IEEE Transactions on Medical Imaging.

[304]  Alistair Burns,et al.  Observations on the brains of demented old people. B.E. Tomlinson, G. Blessed and M. Roth, Journal of the Neurological Sciences (1970) 11, 205–242; (1968) 7, 331–356 , 1997 .

[305]  C. Slichter Principles of magnetic resonance , 1963 .

[306]  M N Rossor,et al.  Correlation between rates of brain atrophy and cognitive decline in AD , 1999, Neurology.

[307]  Dmitry B. Goldgof,et al.  The Use of Three- and Four-Dimensional Surface Harmonics for Rigid and Nonrigid Shape Recovery and Representation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[308]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[309]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[310]  Ali R. Khan,et al.  FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping , 2008, NeuroImage.

[311]  Guy Marchal,et al.  Automated multi-modality image registration based on information theory , 1995 .

[312]  Daniel Rueckert,et al.  LEAP: Learning embeddings for atlas propagation , 2010, NeuroImage.

[313]  William E. Lorensen,et al.  The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[314]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[315]  W. M. van der Flier,et al.  Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[316]  Paul A. Yushkevich,et al.  Feature Selection for Shape-Based Classification of Biological Objects , 2003, IPMI.

[317]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[318]  J. Mosimann Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions , 1970 .

[319]  C. Jack,et al.  Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease , 1998, Neurology.