Usable Post-Classification Visualizations for Android Collusion Detection and Inspection

[1]  Karim O. Elish,et al.  Comprehensive Behavior Profiling for Proactive Android Malware Detection , 2014, ISC.

[2]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[3]  Somesh Jha,et al.  Retargeting Android applications to Java bytecode , 2012, SIGSOFT FSE.

[4]  Robert Gove,et al.  Detecting malware samples with similar image sets , 2014, VizSEC.

[5]  John McHugh,et al.  An Anthropological Approach to Studying CSIRTs , 2014, IEEE Security & Privacy.

[6]  Aaron Tomb,et al.  Multi-App Security Analysis with FUSE: Statically Detecting Android App Collusion , 2014, PPREW-4.

[7]  Alex Endert,et al.  Interactive Querying over Large Network Data: Scalability, Visualization, and Interaction Design , 2015, IUI Companion.

[8]  David A. Wagner,et al.  Analyzing inter-application communication in Android , 2011, MobiSys '11.

[9]  Lars Ole Andersen,et al.  Program Analysis and Specialization for the C Programming Language , 2005 .

[10]  Laurie Hendren,et al.  Soot: a Java bytecode optimization framework , 2010, CASCON.

[11]  Thomas W. Reps,et al.  Precise Interprocedural Dataflow Analysis with Applications to Constant Propagation , 1995, TAPSOFT.

[12]  Peter Müller,et al.  Universes: Lightweight Ownership for JML , 2005, J. Object Technol..

[13]  Apu Kapadia,et al.  Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones , 2011, NDSS.

[14]  Wenke Lee,et al.  CHEX: statically vetting Android apps for component hijacking vulnerabilities , 2012, CCS.

[15]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[16]  Jules White,et al.  Applying machine learning classifiers to dynamic Android malware detection at scale , 2013, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC).

[17]  Jacques Klein,et al.  FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps , 2014, PLDI.

[18]  Lujo Bauer,et al.  Android taint flow analysis for app sets , 2014, SOAP '14.

[19]  Hubert Ritzdorf,et al.  Analysis of the communication between colluding applications on modern smartphones , 2012, ACSAC '12.

[20]  Sankardas Roy,et al.  Amandroid: A Precise and General Inter-component Data Flow Analysis Framework for Security Vetting of Android Apps , 2014, CCS.

[21]  Alexander Pretschner,et al.  DAVAST: data-centric system level activity visualization , 2014, VizSec '14.

[22]  Joe D. Warren,et al.  The program dependence graph and its use in optimization , 1984, TOPL.

[23]  Thomas W. Reps,et al.  Program analysis via graph reachability , 1997, Inf. Softw. Technol..

[24]  Anastasios A. Economides,et al.  SRNET: a real-time, cross-based anomaly detection and visualization system for wireless sensor networks , 2013, VizSec '13.

[25]  K. Yi,et al.  Static Analyzer for Detecting Privacy Leaks in Android Applications , 2012 .

[26]  Barton P. Miller,et al.  Automated tracing and visualization of software security structure and properties , 2012, VizSec '12.

[27]  Byung-Gon Chun,et al.  TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones , 2010, OSDI.

[28]  Karim O. Elish,et al.  On the Need of Precise Inter-App ICC Classification for Detecting Android , 2015 .

[29]  David W. Binkley,et al.  Interprocedural slicing using dependence graphs , 1988, SIGP.

[30]  Jacques Klein,et al.  IccTA: Detecting Inter-Component Privacy Leaks in Android Apps , 2015, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[31]  Julian Dolby,et al.  Scalable and precise taint analysis for Android , 2015, ISSTA.

[32]  Yajin Zhou,et al.  Systematic Detection of Capability Leaks in Stock Android Smartphones , 2012, NDSS.

[33]  Bojan Mohar,et al.  Adding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard , 2012, SIAM J. Comput..

[34]  Yuval Elovici,et al.  “Andromaly”: a behavioral malware detection framework for android devices , 2012, Journal of Intelligent Information Systems.

[35]  Jacques Klein,et al.  Effective inter-component communication mapping in Android with Epicc: an essential step towards holistic security analysis , 2013 .

[36]  Flemming Nielson,et al.  Principles of Program Analysis , 1999, Springer Berlin Heidelberg.

[37]  Ahmad-Reza Sadeghi,et al.  Towards Taming Privilege-Escalation Attacks on Android , 2012, NDSS.

[38]  Rex Hartson,et al.  The UX book, process and guidelines for ensuring a quality user experience by Rex Hartson and Pardha S. Pyla , 2012, SOEN.

[39]  Xuxian Jiang,et al.  Profiling user-trigger dependence for Android malware detection , 2015, Comput. Secur..

[40]  Nicolas Christin,et al.  All Your Droid Are Belong to Us: A Survey of Current Android Attacks , 2011, WOOT.

[41]  Chris North,et al.  BiSet: Semantic Edge Bundling with Biclusters for Sensemaking , 2016, IEEE Transactions on Visualization and Computer Graphics.

[42]  Srdjan Capkun,et al.  Application Collusion Attack on the Permission-Based Security Model and its Implications for Modern Smartphone Systems , 2010 .

[43]  Giuseppe Santucci,et al.  Modeling Incremental Visualizations , 2013, EuroVA@EuroVis.

[44]  Chris North,et al.  Bixplorer: Visual Analytics with Biclusters , 2013, Computer.