Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles

Abstract The elastic constants that describe the fundamental elastic properties of NiTi martensites are unknown today. We present results of ab initio calculations of the ground-state energies and the relative mechanical stability of B19, B19′ and B33 (a theoretically predicted ground state from recent ab initio studies). It is demonstrated that shear stresses of the order of 1 GPa are sufficient to mechanically stabilize B19′ against B33. The full sets of elastic constants and the associated macroscopic elastic parameters (Young’s, shear and bulk moduli, Poisson ratios) are determined for the first time for B19′ and B33 NiTi. The predicted macroscopic Young’s modulus of B19′ based on the first-principles results is an order of magnitude larger than the values currently assumed in micro or continuum mechanical modeling studies. Yet the results are in good agreement with novel experimental data and, furthermore, resolve a long-standing issue in the well-known Muller–Achenbach–Seelecke model by predicting Young’s modulus of martensite to be larger than that of austenite.

[1]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[2]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[3]  Karin M. Rabe,et al.  Lattice instabilities of cubic NiTi from first principles , 2001 .

[4]  J. W. Morris,et al.  The ideal strength of iron in tension and shear , 2003 .

[5]  G. Bihlmayer,et al.  Martensitic phase transformation and electronic structure of NiTi and PdTi , 1996 .

[6]  Zhijun Lin,et al.  Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations , 2007 .

[7]  G. Eggeler,et al.  New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires , 2006 .

[8]  Stefan Seelecke,et al.  Thermodynamic aspects of shape memory alloys , 2001 .

[9]  S. Miyazaki,et al.  CRYSTAL STRUCTURE OF THE MARTENSITE IN Ti-49.2 at.%Ni ALLOY ANALYZED BY THE SINGLE CRYSTAL X-RAY DIFFRACTION METHOD , 1985 .

[10]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[11]  First-principles study of the structural energetics of PdTi and PtTi , 2002, cond-mat/0207090.

[12]  Li,et al.  Mechanical instabilities of homogeneous crystals. , 1995, Physical review. B, Condensed matter.

[13]  Neckel,et al.  Elastic properties of B2-NiTi and B2-PdTi. , 1994, Physical Review B (Condensed Matter).

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  Y. Chumlyakov,et al.  A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation , 2001 .

[16]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[17]  Emily A Carter,et al.  Finding transition states for crystalline solid-solid phase transformations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[19]  G. Bihlmayer,et al.  Electronic structure of the martensitic phases B19'-NiTi and B19-PdTi , 1993 .

[20]  K. Gall,et al.  Density functional theory investigation of surface-stress-induced phase transformations in fcc metal nanowires , 2006 .

[21]  Yinong Liu,et al.  Apparent modulus of elasticity of near-equiatomic NiTi , 1998 .

[22]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[23]  C. Somsen,et al.  Investigation of the phase evolution in a super-elastic NiTi shape memory alloy (50.7 at.%Ni) under extensional load with synchrotron radiation , 2004 .

[24]  Gunther Eggeler,et al.  Stress and strain states in a pseudoelastic wire subjected to bending rotation , 2006 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[27]  G. Duscher,et al.  Modeling and characterization of atomically sharp “perfect” Ge/SiO2 interfaces , 2004 .

[28]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[29]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[30]  The influence of temperature on lattice parameters of coexisting phases in NiTi shape memory alloys—a neutron diffraction study , 2004 .

[31]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[32]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[33]  Stability of pressure-dependent, thermally-induced displacive transformations in bi-atomic crystals , 2002 .

[34]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[35]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[36]  G. Hart,et al.  First-principles elastic constants and electronic structure of α-Pt2Si and PtSi , 2000, cond-mat/0008200.

[37]  K. Hackl,et al.  On the calculation of energy-minimizing phase fractions in shape memory alloys , 2007 .

[38]  J. Emmerlich,et al.  Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics , 2007 .

[39]  Landau theory for shape memory polycrystals , 2003, cond-mat/0309206.

[40]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[41]  Xiangyang Huang,et al.  Crystal structures and shape-memory behaviour of NiTi , 2003, Nature materials.

[42]  T. Antretter,et al.  Size effects on the martensitic phase transformation of NiTi nanograins , 2007 .

[43]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[44]  Mark A.M. Bourke,et al.  Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometry , 2005 .

[45]  K. Parlinski,et al.  Lattice dynamics of NiTi austenite, martensite, and R phase , 2002 .

[46]  G. Eggeler,et al.  On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys , 2005 .

[47]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[48]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[49]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[50]  M. Bram,et al.  The Potential of Powder Metallurgy for the Fabrication of Biomaterials on the Basis of Nickel‐Titanium: A Case Study with a Staple Showing Shape Memory Behaviour , 2005 .

[51]  J. Hafner Atomic-scale computational materials science ☆ , 2000 .

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  T. Waitz The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys , 2005 .

[54]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  H. Karnthaler,et al.  Martensitic phase transformations in nanocrystalline NiTi studied by TEM , 2004 .

[57]  Baroni,et al.  Ab initio lattice dynamics of diamond. , 1993, Physical review. B, Condensed matter.

[58]  Michal Landa,et al.  Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy , 2005 .

[59]  T Prakash G. Thamburaja,et al.  Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning , 2007 .