Interaction of thermocapillary and natural convection flows during solidification: normal and reduced gravity conditions

[1]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[2]  D. R. Poirier,et al.  Conservation of mass and momentum for the flow of interdendritic liquid during solidification , 1990 .

[3]  Sergio D. Felicelli,et al.  Thermosolutal convection during dendritic solidification of alloys: Part II. Nonlinear convection , 1989 .

[4]  D. E. Bornside,et al.  Toward an integrated analysis of czochralski growth , 1989 .

[5]  Theodore L. Bergman,et al.  Prediction of Conjugate Heat Transfer in a Solid–Liquid System: Inclusion of Buoyancy and Surface Tension Forces in the Liquid Phase , 1989 .

[6]  Jonathan A. Dantzig,et al.  MODELLING LIQUID-SOLID PHASE CHANGES WITH MELT CONVECTION , 1989 .

[7]  R. Peyret,et al.  A Chebyshev collocation method for the Navier–Stokes equations with application to double‐diffusive convection , 1989 .

[8]  Jeffrey J. Derby,et al.  A finite element method for analysis of fluid flow, heat transfer and free interfaces in Czochralski crystal growth , 1989 .

[9]  R. Natarajan Thermocapillary flows in a rotating float zone under microgravity , 1989 .

[10]  Frank P. Incropera,et al.  NUMERICAL ANALYSIS OF BINARY SOLID-LIQUID PHASE CHANGE WITH BUOYANCY AND SURFACE TENSION DRIVEN CONVECTION , 1989 .

[11]  R. Viskanta,et al.  Heat Transfer During Melting and Solidification of Metals , 1988 .

[12]  Christoph Beckermann,et al.  Double-diffusive convection due to melting , 1988 .

[13]  Sanjay M. Correa,et al.  Computation of Flow in a Gas Turbine Combustor , 1988 .

[14]  Julian Szekely,et al.  Mathematical and physical modelling of doublediffusive convection of aqueous solutions crystallizing at a vertical wall , 1988, Journal of Fluid Mechanics.

[15]  B. Feuerbacher,et al.  Materials Sciences in Space , 1987, July.

[16]  Frank P. Incropera,et al.  A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems. II: Application to solidification in a rectangular cavity , 1987 .

[17]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[18]  J. M. Floryan,et al.  Thermocapillary effects in liquid bridges. I - Thermocapillary convection. II - Deformation of the interface and capillary instability , 1987 .

[19]  L. L. Regelʹ Materials science in space : theory, experiments, technology , 1987 .

[20]  Marc K. Smith Thermocapillary and centrifugal-buoyancy-driven motion in a rapidly rotating liquid cylinder , 1986, Journal of Fluid Mechanics.

[21]  Wei Shyy,et al.  a Study of Recirculating Flow Computation Using Body-Fitted Coordinates: Consistency Aspects and Mesh Skewness , 1986 .

[22]  G. O. Roberts,et al.  Confinement of thermocapillary floating zone flow by uniform rotation , 1986 .

[23]  Martin E. Glicksman,et al.  Interaction of Flows with the Crystal-Melt Interface , 1986 .

[24]  W. E. Langlois Buoyancy-Driven Flows in Crystal-Growth Melts , 1985 .

[25]  Wei Shyy,et al.  Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System , 1985 .

[26]  S. Ostrach,et al.  Oscillatory thermocapillary convection in a simulated floating-zone configuration , 1984 .

[27]  S. Ostrach Fluid Mechanics in Crystal Growth—The 1982 Freeman Scholar Lecture , 1983 .

[28]  D. Schwabe,et al.  Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface , 1983, Journal of Fluid Mechanics.

[29]  Nobuyuki Kobayashi,et al.  Hydrodynamics in Czochralski growth-computer analysis and experiments , 1981 .

[30]  G. Seibert Material Sciences in Space , 1980 .