Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements

Abstract The calibration of phenomenological constitutive material models has been a constant need, because the parameters differ for each material and the ability of a model to mimic the real behaviour of a material is highly dependent on the quality of these parameters. Classically, the parameters of constitutive models are determined by standard tests under the assumption of homogeneous strain and stress fields in the zone of interest. However, in the last decade, Digital Image Correlation techniques and full-field measurements have enabled the development of new parameter identification strategies, such as the Finite Element Model Updating, the Constitutive Equation Gap Method, the Equilibrium Gap Method and the Virtual Fields Method. Although these new strategies have proven to be effective for linear and non-linear models, the implementation procedure for some of them is still a laborious task. The aim of this work is to give a detailed insight into the implementation aspects and validation of these methods. Detailed flowcharts of each strategy, focusing on the implementation aspects, are presented and their advantages and disadvantages are discussed. Moreover, these modern strategies are compared for the cases of homogeneous isotropic linear elasticity and isotropic plasticity with isotropic hardening. A simple numerical example is used to validate and compare the different strategies.

[1]  S. Roux,et al.  Digital Image Mechanical Identification (DIMI) , 2007, 0712.3918.

[2]  Gilles Lubineau,et al.  A Dissipation Gap Method for full‐field measurement‐based identification of elasto‐plastic material parameters , 2012 .

[3]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[4]  Michael A. Sutton,et al.  Identification of the Dynamic Properties of Al 5456 FSW Welds Using the Virtual Fields Method , 2015, Journal of Dynamic Behavior of Materials.

[5]  Gun Jin Yun,et al.  A self-optimizing inverse analysis method for estimation of cyclic elasto-plasticity model parameters , 2011 .

[6]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[7]  M. Sutton,et al.  Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method , 2017 .

[8]  Stéphane Roux,et al.  Digital image correlation and biaxial test on composite material for anisotropic damage law identification , 2009 .

[9]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[10]  D. Debruyne,et al.  Alternative method for the identification of the strain hardening behaviour along the rolling direction of coil , 2017 .

[11]  H. Sol,et al.  Identification of Mechanical Material Behavior Through Inverse Modeling and DIC , 2008 .

[12]  T. Kuwabara,et al.  Identification of Post-Necking Hardening Phenomena in Ductile Sheet Metal , 2014 .

[13]  Jean-Claude Gelin,et al.  A finite element-based identification method for complex metallic material behaviours , 2001 .

[15]  Hugo Sol,et al.  Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens , 2007 .

[16]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[17]  Stéphane Roux,et al.  A stress scale in full-field identification procedures: a diffuse stress gauge , 2005 .

[18]  Stéphane Avril,et al.  The Virtual Fields Method for Extracting Constitutive Parameters From Full‐Field Measurements: a Review , 2006 .

[19]  Fabrice Pierron,et al.  Application of the virtual fields method to large strain anisotropic plasticity , 2016 .

[20]  Jian Cao,et al.  A study on formulation of objective functions for determining material models , 2008 .

[21]  Stéphane Roux,et al.  Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC , 2015 .

[22]  J. Kajberg,et al.  Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields , 2004 .

[23]  L. Bruno,et al.  Elastic characterization of orthotropic plates of any shape via static testing , 2008 .

[24]  Biswanath Banerjee,et al.  Anisotropic linear elastic parameter estimation using error in the constitutive equation functional , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  J. Kajberg,et al.  Viscoplastic parameter estimation by high strain-rate experiments and inverse modelling – Speckle measurements and high-speed photography , 2007 .

[26]  Stéphane Roux,et al.  Identification of damage fields using kinematic measurements , 2002 .

[27]  F. Barlat,et al.  Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels , 2017 .

[28]  N. Petrinic,et al.  Introduction to computational plasticity , 2005 .

[29]  Stéphane Avril,et al.  Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-plastic Problems Using Surface Measurements of Deformation Fields , 2008 .

[30]  Benoît Blaysat,et al.  The constitutive compatibility method for identification of material parameters based on full-field measurements , 2013 .

[31]  S. Thuillier,et al.  Potential of the Cross Biaxial Test for Anisotropy Characterization Based on Heterogeneous Strain Field , 2015 .

[32]  Eric Markiewicz,et al.  A review of characterisation and parameters identification of materials constitutive and damage models: From normalised direct approach to most advanced inverse problem resolution , 2017 .

[33]  François Hild,et al.  Identification of elastic parameters by displacement field measurement , 2002 .

[34]  Stéphane Roux,et al.  A finite element formulation to identify damage fields: the equilibrium gap method , 2004 .

[35]  Fabrice Pierron,et al.  Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields , 2011, Computational Mechanics.

[36]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[37]  Julien Réthoré,et al.  A fully integrated noise robust strategy for the identification of constitutive laws from digital images , 2010 .

[38]  Sri Gowtham Thakku,et al.  Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo , 2016, Biomechanics and Modeling in Mechanobiology.

[39]  Stéphane Avril,et al.  Sensitivity of the virtual fields method to noisy data , 2004 .

[40]  Pierre Vacher,et al.  Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters , 2011 .

[41]  Eric Markiewicz,et al.  Identification of Johnson–Cook's Viscoplastic Model Parameters Using the Virtual Fields Method: Application to Titanium Alloy Ti6Al4V , 2013 .

[42]  Eric Florentin,et al.  Identification of the parameters of an elastic material model using the constitutive equation gap method , 2010 .

[43]  Michel Grédiac,et al.  The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements , 2012 .

[44]  Fabrice Pierron,et al.  Effect of DIC Spatial Resolution, Noise and Interpolation Error on Identification Results with the VFM , 2015 .

[45]  Michel Grédiac,et al.  Principe des travaux virtuels et identification , 1989 .

[46]  Eric Florentin,et al.  Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations , 2011 .

[47]  Bertrand Wattrisse,et al.  Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials , 2008 .

[48]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[49]  Fabrice Pierron,et al.  Sensitivity-based virtual fields for the non-linear virtual fields method , 2017, Computational mechanics.

[50]  D. Notta-Cuvier,et al.  An innovative procedure for characterising a coupled elastoplastic damage model of behaviour using the Virtual Fields Method , 2015 .

[51]  F. Barlat,et al.  Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels , 2016 .

[52]  António Andrade-Campos,et al.  Novel criteria for determination of material model parameters , 2012 .

[53]  Wenfeng Hao,et al.  Inversion and decoupling of thermo-mechanical deformation in anisotropic materials using the virtual fields method , 2013, Proceedings of the Royal Society A.

[54]  Taylan Altan,et al.  Testing and modelling of material behaviour and formability in sheet metal forming , 2014 .

[55]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[56]  S. Roux,et al.  Equilibrium Gap Method , 2012 .

[57]  Frederic Roger,et al.  Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method , 2014 .

[58]  Andrei Constantinescu,et al.  Spatial localization of the error of constitutive law for the identification of defects in elastic bodies , 2000 .

[59]  Michael A. Sutton,et al.  Computer Vision-Based, Noncontacting Deformation Measurements in Mechanics: A Generational Transformation , 2013 .

[60]  R. Clough,et al.  Finite element applications in the characterization of elastic solids , 1971 .

[61]  Stéphane Avril,et al.  Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening , 2010 .

[62]  Marta Oliveira,et al.  Inverse Strategies for Identifying the Parameters of Constitutive Laws of Metal Sheets , 2016 .