Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants

This paper compares multi-criteria decision aiding (MCDA) and data envelopment analysis (DEA) approaches for assessing renewable energy plants, in order to determine their performance in terms of economic, environmental, and social criteria and indicators. The case is for a dataset of 41 agricultural biogas plants in Austria using anaerobic digestion. The results indicate that MCDA constitutes an insightful approach, to be used alternatively or in a complementary way to DEA, namely in situations requiring a meaningful expression of managerial preferences regarding the relative importance of evaluation aspects to be considered in performance assessment.

[1]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[2]  Daniel Spreng,et al.  Energy use and energy access in relation to poverty , 2003 .

[3]  David L. Goldblatt Northern Consumption: A Critical Review of Issues, Driving Forces, Disciplinary Approaches and Critiques , 1999 .

[4]  M. Farsi,et al.  Cost efficiency in the Swiss gas distribution sector , 2007 .

[5]  R. Madlener,et al.  Status of Wind Power Development and Policies in China , 2004 .

[6]  Do Wages Rise with Job Seniority? The Swiss Case , 2001 .

[7]  E. Jochem An Agenda for Energy and Material Efficiency Policy – An Element of Technology Policy for a More Sustainable Use of Natural Resources , 2005 .

[8]  V. V. Podinovski,et al.  Production trade-offs and weight restrictions in data envelopment analysis , 2004, J. Oper. Res. Soc..

[9]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[10]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[11]  R. Braun Efficiency evaluation of energy crop digestion plants , .

[12]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[13]  Daniel Spreng,et al.  Energie, Umwelt und die 2000 Watt Gesellschaft , 2001 .

[14]  A. Mueller Finding groups in large data sets , 2002 .

[15]  R. Madlener,et al.  Renewable Energy Policy in the Presence of Innovation: Does Pre-Commitment by the Government Matter? , 2005 .

[16]  Bernard Aebischer,et al.  Monatlicher Verbrauch von Heizöl extraleicht im Dienstleistungssektor , 2000 .

[17]  Timothy Coelli,et al.  An Introduction to Efficiency and Productivity Analysis , 1997 .

[18]  Shonali Pachauri,et al.  Fuel choices in urban Indian households , 2005, Environment and Development Economics.

[19]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[20]  Massimo Filippini,et al.  Regional differences in electricity distribution costs and their consequences for yardstick regulation of access prices , 2001 .

[21]  S. Banfi,et al.  Willingness to pay for energy-saving measures in residential buildings , 2007 .

[22]  Scale and cost efficiency in the Swiss electricity distribution industry: evidence from a frontier cost approach , 2001 .

[23]  Reinhard Madlener,et al.  Exploring Experience Curves for the Building Envelope: An Investigation for Switzerland for 1970–2020 , 2003 .

[24]  Reinhard Madlener,et al.  Modeling technology adoption as an irreversible investment under uncertainty: the case of the Turkish electricity supply industry , 2005 .

[25]  Marco Semadeni Energy storage as an essential part of sustainable energy systems , 2003 .

[26]  Reinhard Madlener,et al.  A Sustainability Framework for Enhancing the Long-Term Success of Lulucf Projects , 2006 .

[27]  M. Farsi,et al.  Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models , 2006 .

[28]  Massimo Filippini,et al.  Economies of scale and scope in local public transportation , 2007 .

[29]  R. Madlener,et al.  A Description of the Hybrid Bottom-Up CGE Model SCREEN with an Application to Swiss Climate Policy Analysis , 2001 .

[30]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[31]  M. Farsi,et al.  Regulation and Measuring Cost-Efficiency with Panel Data Models: Application to Electricity Distribution Utilities , 2004 .

[32]  M. Filippini,et al.  Economies of scale in the Swiss hydropower sector , 2007 .

[33]  C.A.K. Lovell,et al.  Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Nonparametric Approach , 1989 .

[34]  E. Jochem,et al.  Grenzkosten bei forcierten Energiesparmassnahmen in Bereich Wohngebäude , 2000 .

[35]  Luis C. Dias,et al.  IRIS - Interactive Robustness analysis and parameters' Inference for multicriteria Sorting problems (Version 2.0) User Manual , 2003 .

[36]  M. Farsi,et al.  A Benchmarking analysis of electricity distribution utilities in Switzerland , 2005 .

[37]  Agapi Somwaru,et al.  Incorporating indesirable outputs into models of production: an application to US agriculture , 1994 .

[38]  Adrian W. Müller,et al.  Rent of Hydropower Generation in Switzerland in a Liberalized Market , 2003 .

[39]  M. Filippini BENCHMARKING ANALYSIS IN ELECTRICITY DISTRIBUTION , 2005 .

[40]  W. Greene,et al.  Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies , 2004 .

[41]  S. Banfi,et al.  Impact of the new Swiss electricity law on the competitiveness of hydropower , 2002 .

[42]  Reinhard Madlener,et al.  Promoting Renewable Electricity Generation in Imperfect Markets: Price vs. Quantity Policies , 2008 .

[43]  L. Hunt,et al.  Fuel tourism in border regions , 2003 .

[44]  C. A. Knox Lovell,et al.  Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA , 2000, Eur. J. Oper. Res..

[45]  Luis C. Dias,et al.  An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI , 2002, Eur. J. Oper. Res..

[46]  Kentaka Aruga Differences in characteristics of religious groups in India: as seen from household survey data , 2003 .

[47]  Reinhard Madlener,et al.  A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies , 2008 .

[48]  R. Madlener Modelling the Adoption and Diffusion of Decentralised Energy Conversion Technologies with Hazard Rate Models , 2003 .

[49]  S. Banfi,et al.  Resource Rent Taxation – A New Perspective for the (Swiss) Hydropower Sector , 2004 .

[50]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[51]  Tarja Joro,et al.  Weight-restricted DEA in action: from expert opinions to mathematical models , 2004, J. Oper. Res. Soc..

[52]  Eberhard Jochem,et al.  Erneuerungsverhalten im Bereich Wohngebäude - Auswertung des Umfrage-Pretests , 2001 .

[53]  S. Pachauri,et al.  Elasticities of electricity demand in urban Indian households , 2004 .

[54]  Massimo Filippini,et al.  Efficiency and Regulation of the Slovenian Electricity Distribution Companies , 2004 .

[55]  Marco Semadeni Long-Term Energy Scenarios: Information on Aspects of Sustainable Energy Supply as a Prelude to Participatory Sessions , 2002 .

[56]  Adrian W. Müller,et al.  Incentive Compatible Extraction of Natural Resource Rent , 2003 .

[57]  Massimo Filippini,et al.  Deregulation of the Swiss Electricity Industry: Implication for the Hydropower Sector , 2002 .