Diverse Phase Relations among Neuronal Rhythms and Their Potential Function

[1]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[2]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[3]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[4]  E N Brown,et al.  A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells , 1998, The Journal of Neuroscience.

[5]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization. , 2000, Cerebral cortex.

[6]  R. Silberstein,et al.  Steady-state visual evoked potentials and travelling waves , 2000, Clinical Neurophysiology.

[7]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[9]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[10]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[11]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[12]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[13]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[14]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[15]  P. Nunez,et al.  Spatial‐temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks , 2001, Human brain mapping.

[16]  L. M. Ward,et al.  Synchronous neural oscillations and cognitive processes , 2003, Trends in Cognitive Sciences.

[17]  Cees van Leeuwen,et al.  Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity , 2004, Biological Cybernetics.

[18]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[19]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[20]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[21]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[22]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[23]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[24]  Jian-Young Wu,et al.  Propagating Waves of Activity in the Neocortex: What They Are, What They Do , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[25]  K. Müller,et al.  Robustly estimating the flow direction of information in complex physical systems. , 2007, Physical review letters.

[26]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[27]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[28]  Evgueniy V. Lubenov,et al.  Hippocampal theta oscillations are travelling waves , 2009, Nature.

[29]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[30]  Danko Nikolić,et al.  Time delays in the β/γ cycle operate on the level of individual neurons , 2010, Neuroreport.

[31]  Bruce R. Blazar,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010 .

[32]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[33]  Terrence J. Sejnowski,et al.  Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence , 2010, Front. Hum. Neurosci..

[34]  N. Burgess,et al.  Brain oscillations and memory , 2010, Current Opinion in Neurobiology.

[35]  David Ferster,et al.  Membrane Potential Synchrony in Primary Visual Cortex during Sensory Stimulation , 2010, Neuron.

[36]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[37]  Xin Wang,et al.  Exploring the Function of Neural Oscillations in Early Sensory Systems , 2009, Frontiers in neuroscience.

[38]  W. Singer,et al.  Synchrony Makes Neurons Fire in Sequence, and Stimulus Properties Determine Who Is Ahead , 2011, The Journal of Neuroscience.

[39]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[40]  Wulfram Gerstner,et al.  A History of Spike-Timing-Dependent Plasticity , 2011, Front. Syn. Neurosci..

[41]  J. Maunsell,et al.  Network Rhythms Influence the Relationship between Spike-Triggered Local Field Potential and Functional Connectivity , 2011, The Journal of Neuroscience.

[42]  Charles E. Schroeder,et al.  Dual Mechanism of Neuronal Ensemble Inhibition in Primary Auditory Cortex , 2011, Neuron.

[43]  Sunita Mandon,et al.  Switching Neuronal Inputs by Differential Modulations of Gamma-Band Phase-Coherence , 2012, The Journal of Neuroscience.

[44]  Rodrigo F. Salazar,et al.  Content-Specific Fronto-Parietal Synchronization During Visual Working Memory , 2012, Science.

[45]  G. Buzsáki,et al.  Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus , 2012, Neuron.

[46]  Wolfgang Klimesch,et al.  Evoked traveling alpha waves predict visual-semantic categorization-speed , 2012, NeuroImage.

[47]  M. Kahana,et al.  Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse , 2012, The Journal of Neuroscience.

[48]  P. Robinson,et al.  Human Cortical Traveling Waves: Dynamical Properties and Correlations with Responses , 2012, PloS one.

[49]  Helen M. Morgan,et al.  The Role of Beta-Frequency Neural Oscillations in Motor Control , 2012, The Journal of Neuroscience.

[50]  Annette Witt,et al.  Dynamic Effective Connectivity of Inter-Areal Brain Circuits , 2011, PLoS Comput. Biol..

[51]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[52]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[53]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[54]  C. Schroeder,et al.  The Spectrotemporal Filter Mechanism of Auditory Selective Attention , 2013, Neuron.

[55]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[56]  A. Kohn,et al.  No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex , 2013, The Journal of Neuroscience.

[57]  John J. Foxe,et al.  Propagating Neocortical Gamma Bursts Are Coordinated by Traveling Alpha Waves , 2013, The Journal of Neuroscience.

[58]  Pascal Fries,et al.  Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention , 2013, NeuroImage.

[59]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[60]  Gustavo Deco,et al.  Intra-cortical propagation of EEG alpha oscillations , 2014, NeuroImage.

[61]  C. Pennartz,et al.  Functions of gamma‐band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems , 2014, The European journal of neuroscience.

[62]  Ian H. Stevenson,et al.  Spatially Distributed Local Fields in the Hippocampus Encode Rat Position , 2014, Science.

[63]  Charles M Gray,et al.  Frontoparietal Correlation Dynamics Reveal Interplay between Integration and Segregation during Visual Working Memory , 2014, The Journal of Neuroscience.

[64]  Richard A Andersen,et al.  The Parietal Reach Region Selectively Anti-Synchronizes with Dorsal Premotor Cortex during Planning , 2014, The Journal of Neuroscience.

[65]  Miles A. Whittington,et al.  Neurosystems: brain rhythms and cognitive processing , 2013, The European journal of neuroscience.

[66]  Daniel Baldauf,et al.  Neural mechanisms of object-based attention , 2014 .

[67]  Peter De Weerd,et al.  Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding , 2015, PLoS Comput. Biol..

[68]  Theodoros P. Zanos,et al.  A Sensorimotor Role for Traveling Waves in Primate Visual Cortex , 2015, Neuron.

[69]  P. Fries,et al.  Both ongoing alpha and visually induced gamma oscillations show reliable diversity in their across-site phase-relations. , 2015, Journal of neurophysiology.

[70]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[71]  Bernhard Schölkopf,et al.  Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer , 2015, PLoS biology.