Fabrication and Characterization of NiMn 2 O 4 NTC Thermistor Thick Films by Aerosol Deposition

Abstract Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such assensor, temperature compensation devices. NTC thermistor thick films of Ni 1+x Mn 2-x O 4+δ (x = 0.05, 0, −0.05) were fabricatedon glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristicsof as-deposited films showed that B constant was ranged from 3900 to 4200 K between 25 o C and 85C without heat treatment.When the film was annealed at 600oC 1h, the resistivity of film gradually decreased due to crystallization and grain growth.The resistivity and the activation energy of films annealed at 600C for 1 h were 5.203, 5.95, 4.772 KΩ·cm and 351, 326,299 meV for Ni 0.95 Mn 2.05 O 4+δ , NiMn 2 O 4 and Ni 1.05 Mn 1.95 O 4+δ , respectively.Key wordsThermistor, Negative temperature coefficient (NTC), Aerosol deposition, Thick film. 1. 서 론 유비쿼터스 센서 네트워크, 지능형 자동차, 모바일 전자기기 등의 산업이 발전함에 따라 다양한 종류의 정밀한 센서가 요구되고 있다. 그 중 온도에 따라 재료의 저항이 변화하는 서미스터(thermistor)는 대표적인 온도 감지 센서로서 그 종류에는 NTC (Negative temperature coefficientof resistance)와 PTC (Positive temperature coefficient ofresistance)가 있다.

[1]  Hyoun‐Ee Kim,et al.  Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy , 2011 .

[2]  Vijaya Puri,et al.  Composition dependent resistivity of thick film Ni(1−x)CoxMn2O4: (0 ≤ x ≤ 1) NTC thermistors , 2006 .

[3]  Moon-Ho Lee,et al.  Characteristics of Thin-Film NTC Infrared Sensors , 2002 .

[4]  Moon-Ho Lee,et al.  Detectivity of thin-film NTC thermal sensors , 2002 .

[5]  S. Gosavi,et al.  Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors , 2008 .

[6]  Woon-Ha Yoon,et al.  Highly Dense and Nanograined NiMn2O4 Negative Temperature coefficient Thermistor Thick Films Fabricated by Aerosol‐Deposition , 2009 .

[7]  G. Bailleul,et al.  Manganese based spinel – like ceramics with NTC – type thermistor behaviour , 2007 .

[8]  Woon-Ha Yoon,et al.  Photocatalytic TiO2 thin films by aerosol-deposition: From micron-sized particles to nano-grained thin film at room temperature , 2008 .

[9]  D. Amalnerkar,et al.  Microstructure and electrical performance of eco-friendly thick film resistor compositions fired at different firing conditions , 2007 .

[10]  Daoli Zhang,et al.  Preparation and characteristic of the thermistor materials in the thick-film integrated temperature–humidity sensor , 2003 .

[11]  Rainer Schmidt,et al.  Production of NTCR thermistor devices based on NiMn2O4+δ , 2004 .

[12]  M. Hosseini,et al.  Effect of grain size and microstructures on resistivity of Mn–Co–Ni thermistor , 1998 .

[13]  Ian M. Reaney,et al.  Decomposition of NiMn2O4 spinel : an NTC thermistor material , 2001 .

[14]  Pantelija M. Nikolic,et al.  Intrinsic resistivity of sintered Nickel Manganite vs. powder activation time and density , 2008, Science of Sintering.

[15]  D. C. Kulkarni,et al.  Structural and electrical properties of fritless Ni(1−x)CuxMn2O4 (0 ≤ x ≤ 1) thick film NTC ceramic , 2010 .

[16]  K. R. Dayas,et al.  Tape casting of nickel manganite NTC ceramics for chip thermistors , 2008 .

[17]  K. Park,et al.  Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing , 2003 .

[18]  P. K. Datta,et al.  Electron-hopping modes in NiMn 2 O 4+δ materials , 2005 .