Web Apps Come of Age for Molecular Sciences

Whereas server-side programs are essential to maintain databases and run data analysis pipelines and simulations, client-side web-based computing tools are also important as they allow users to access, visualize and analyze the content delivered to their devices on-the-fly and interactively. This article reviews the best-established tools for in-browser plugin-less programming, including JavaScript as used in HTML5 as well as related web technologies. Through examples based on JavaScript libraries, web applets, and even full web apps, either alone or coupled to each other, the article puts on the spotlight the potential of these technologies for carrying out numerical calculations, text processing and mining, retrieval and analysis of data through queries to online databases and web services, effective visualization of data including 3D visualization and even virtual and augmented reality; all of them in the browser at relatively low programming effort, with applications in cheminformatics, structural biology, biophysics, and genomics, among other molecular sciences.

[1]  Bruce Alberts,et al.  Making Data Maximally Available , 2011, Science.

[2]  J. Sussman,et al.  JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia , 2013 .

[3]  Mayya Sedova,et al.  Protael: protein data visualization library for the web , 2016, Bioinform..

[4]  Luc Patiny,et al.  ChemCalc: A Building Block for Tomorrow's Chemical Infrastructure , 2013, J. Chem. Inf. Model..

[5]  Akira R. Kinjo,et al.  Molmil: a molecular viewer for the PDB and beyond , 2016, Journal of Cheminformatics.

[6]  Matthew R. Laird,et al.  GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications , 2015, Bioinform..

[7]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[8]  Andreas Prlic,et al.  Web-based molecular graphics for large complexes , 2016, Web3D.

[9]  James Hays,et al.  WebGazer: Scalable Webcam Eye Tracking Using User Interactions , 2016, IJCAI.

[10]  Darrel C. Ince,et al.  The case for open computer programs , 2012, Nature.

[11]  Jun'ichi Tsujii,et al.  GENIA corpus - a semantically annotated corpus for bio-textmining , 2003, ISMB.

[12]  Lacramioara Stoicu-Tivadar,et al.  Gesture Interaction Browser-Based 3D Molecular Viewer , 2016, ICIMTH.

[13]  Maria Jesus Martin,et al.  BioJS: an open source JavaScript framework for biological data visualization , 2013, Bioinform..

[14]  Luciano A. Abriata,et al.  Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server , 2016, BMC Bioinformatics.

[15]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[16]  Irene T. Weber,et al.  AMMP-Vis: a collaborative virtual environment for molecular modeling , 2005, VRST '05.

[17]  Frederik Coppens,et al.  PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization , 2017 .

[18]  Eduardo Galembeck,et al.  Using augmented reality to teach and learn biochemistry , 2017, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[19]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[20]  Peter Ertl,et al.  JSME: a free molecule editor in JavaScript , 2013, Journal of Cheminformatics.

[21]  James A. Evans,et al.  Open Access and Global Participation in Science , 2009, Science.

[22]  Thomas Vosegaard,et al.  jsNMR: an embedded platform‐independent NMR spectrum viewer , 2015, Magnetic resonance in chemistry : MRC.

[23]  Antony J. Williams,et al.  Programmatic conversion of crystal structures into 3D printable files using Jmol , 2016, Journal of Cheminformatics.

[24]  Robert J Lancashire,et al.  The JSpecView Project: an Open Source Java viewer and converter for JCAMP-DX, and XML spectral data files , 2007, Chemistry Central journal.

[25]  Mohamad Mohebifar,et al.  Chemozart: a web-based 3D molecular structure editor and visualizer platform , 2015, Journal of Cheminformatics.

[26]  Lincoln D. Stein,et al.  Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges , 2008, Nature Reviews Genetics.

[27]  Christoph Steinbeck,et al.  SpeckTackle: JavaScript charts for spectroscopy , 2015, Journal of Cheminformatics.

[28]  Joaquín Dopazo,et al.  HGVA: the Human Genome Variation Archive , 2017, Nucleic Acids Res..

[29]  Alexander S. Rose,et al.  NGL Viewer: a web application for molecular visualization , 2015, Nucleic Acids Res..

[30]  Jinbo Xu,et al.  Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016 .

[31]  Núria López-Bigas,et al.  jHeatmap: an interactive heatmap viewer for the web , 2014, Bioinform..

[32]  Jan H. Jensen,et al.  The Molecule Calculator: A Web Application for Fast Quantum Mechanics-Based Estimation of Molecular Properties , 2013 .

[33]  Antony J. Williams,et al.  New Tools and Challenges for Chemical Education: Mobile Learning, Augmented Reality, and Distributed Cognition in the Dawn of the Social and Semantic Web , 2015 .

[34]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[35]  Thomas Ertl,et al.  GPU-based remote visualization of dynamic molecular data on the web , 2016, Graph. Model..

[36]  L. Abriata A Simple Spreadsheet Program To Simulate and Analyze the Far-UV Circular Dichroism Spectra of Proteins , 2011 .

[37]  Jianjun Luo,et al.  BioCircos.js: an interactive Circos JavaScript library for biological data visualization on web applications , 2016, Bioinform..

[38]  Shuguang Yuan,et al.  Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design. , 2017, Trends in biotechnology.

[39]  David S. Goodsell,et al.  Augmented reality with tangible auto-fabricated models for molecular biology applications , 2004, IEEE Visualization 2004.

[40]  Robert M. Hanson,et al.  DSSR-enhanced visualization of nucleic acid structures in Jmol , 2017, Nucleic Acids Res..

[41]  Clarke W. Earley CH5M3D: an HTML5 program for creating 3D molecular structures , 2013, Journal of Cheminformatics.

[42]  Alexandre Masselot,et al.  Visualization of protein sequence features using JavaScript and SVG with pViz.js , 2014, Bioinform..

[43]  Burkhard Rost,et al.  MSAViewer: interactive JavaScript visualization of multiple sequence alignments , 2016, Bioinform..

[44]  T. Palzkill,et al.  How Structural and Physicochemical Determinants Shape Sequence Constraints in a Functional Enzyme , 2015, PloS one.

[45]  M. dal Peraro,et al.  Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor. , 2017, Accounts of chemical research.

[46]  Xian Jin,et al.  PDB-Explorer: a web-based interactive map of the protein data bank in shape space , 2015, BMC Bioinformatics.

[47]  Hao Chen,et al.  Content-rich biological network constructed by mining PubMed abstracts , 2004, BMC Bioinformatics.

[48]  Zhiheng Xu,et al.  OpenFDA: an innovative platform providing access to a wealth of FDA’s publicly available data , 2015, J. Am. Medical Informatics Assoc..

[49]  Xi Jin,et al.  Kekule.js: An Open Source JavaScript Chemoinformatics Toolkit , 2016, J. Chem. Inf. Model..

[50]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[51]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[52]  Sean R. Wilkinson,et al.  QMachine: commodity supercomputing in web browsers , 2014, BMC Bioinformatics.

[53]  Nicholas B Rego,et al.  3Dmol.js: molecular visualization with WebGL , 2014, Bioinform..

[54]  L Stein Web applets: Java, JavaScript and ActiveX. , 1996, Trends in genetics : TIG.

[55]  Manuel Corpas The BioJS article collection of open source components for biological data visualisation , 2014, F1000Research.

[56]  Thomas Ertl,et al.  Remote visualization of dynamic molecular data using WebGL , 2015, Web3D.

[57]  Andrew C. R. Martin Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV) , 2014, F1000Research.

[58]  Colin Berry,et al.  A Protein in the palm of your hand through augmented reality , 2014, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[59]  P Stothard,et al.  The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. , 2000, BioTechniques.

[60]  Doheon Lee,et al.  A corpus for plant-chemical relationships in the biomedical domain , 2016, BMC Bioinformatics.

[61]  Zhiyong Lu,et al.  The CHEMDNER corpus of chemicals and drugs and its annotation principles , 2015, Journal of Cheminformatics.

[62]  Randy L. Gollub,et al.  Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization , 2017, Front. Neuroinform..

[63]  Luc Patiny,et al.  Wikipedia Chemical Structure Explorer: substructure and similarity searching of molecules from Wikipedia , 2015, Journal of Cheminformatics.

[64]  Daniel Jaschob,et al.  SnipViz: a compact and lightweight web site widget for display and dissemination of multiple versions of gene and protein sequences , 2013, BMC Research Notes.

[65]  M. dal Peraro,et al.  A coiled coil switch mediates cold sensing by the thermosensory protein DesK , 2015, Molecular microbiology.

[66]  Luciano A. Abriata,et al.  Structural database resources for biological macromolecules , 2016, Briefings Bioinform..

[67]  Melanie C. Burger,et al.  ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and informatics , 2015, Journal of Cheminformatics.

[68]  Sophia Ananiadou,et al.  Text mining resources for the life sciences , 2016, Database J. Biol. Databases Curation.

[69]  Dan Vanderkam,et al.  pileup.js: a JavaScript library for interactive and in-browser visualization of genomic data , 2016 .

[70]  Alexandre Gillet,et al.  Tangible interfaces for structural molecular biology. , 2005, Structure.