Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions

We study a fully discretized finite element approximation to variable-order Caputo and Riemann–Liouville time-fractional diffusion equations (tFDEs) in multiple space dimensions, which model solute transport in heterogeneous porous media and related applications. We prove error estimates for the proposed methods, which are discretized on an equidistant or graded temporal partition predetermined by the behavior of the variable order at the initial time, only under the regularity assumptions of the variable order, coefficients and the source term but without any regularity assumption of the true solutions. Roughly, we prove that the finite element approximations to variable-order Caputo tFDEs have optimal-order convergence rates on a uniform temporal partition. In contrast the finite element approximations to variable-order Riemann–Liouville tFDEs discretized on a uniform temporal partition achieve an optimal-order convergence rate if $\alpha (0)=\alpha ^{\prime}(0) = 0$ but a suboptimal-order convergence rate if $\alpha (0)>0$. In the latter case, optimal-order convergence rate can be proved by employing the graded temporal partition. We conduct numerical experiments to investigate the performance of the numerical methods and to verify the mathematical analysis.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[3]  Hermann Brunner,et al.  The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes , 1985 .

[4]  Stig Larsson,et al.  Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method , 1998, Math. Comput..

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[7]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[8]  D. Benson,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[9]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[10]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[11]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[12]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[13]  D. Benson,et al.  Relationship between flux and resident concentrations for anomalous dispersion , 2006 .

[14]  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[15]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[16]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[17]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[18]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[19]  William McLean,et al.  Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..

[20]  Yong Zhang,et al.  Particle tracking for fractional diffusion with two time scales , 2010, Comput. Math. Appl..

[21]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[22]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[23]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[24]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[25]  Fawang Liu,et al.  A characteristic difference method for the variable-order fractional advection-diffusion equation , 2013 .

[26]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..

[27]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[28]  Yong Zhang,et al.  Linking aquifer spatial properties and non-Fickian transport in mobile–immobile like alluvial settings , 2014 .

[29]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[30]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[31]  Zhongqiang Zhang,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations , 2015, SIAM J. Sci. Comput..

[32]  Igor Moret,et al.  Solving the time-fractional Schrödinger equation by Krylov projection methods , 2015, J. Comput. Phys..

[33]  Hong Wang,et al.  Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation , 2016, J. Comput. Appl. Math..

[34]  William McLean,et al.  Numerical Solution of the Time-Fractional Fokker-Planck Equation with General Forcing , 2015, SIAM J. Numer. Anal..

[35]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[36]  Lydéric Bocquet,et al.  Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media , 2016, Nature Communications.

[37]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[38]  Lueling Jia,et al.  Mixed-Type Galerkin Variational Principle and Numerical Simulation for a Generalized Nonlocal Elastic Model , 2017, J. Sci. Comput..

[39]  A. Zhokh,et al.  Non-Fickian diffusion of methanol in mesoporous media: Geometrical restrictions or adsorption-induced? , 2017, The Journal of chemical physics.

[40]  Bangti Jin,et al.  Discrete maximal regularity of time-stepping schemes for fractional evolution equations , 2016, Numerische Mathematik.

[41]  Kai Diethelm,et al.  A note on the well-posedness of terminal value problems for fractional differential equations , 2018, Journal of Integral Equations and Applications.

[42]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[43]  Rhiannon Garrard,et al.  A local radial basis function collocation method to solve the variable‐order time fractional diffusion equation in a two‐dimensional irregular domain , 2018 .

[44]  Dumitru Baleanu,et al.  On an accurate discretization of a variable-order fractional reaction-diffusion equation , 2019, Commun. Nonlinear Sci. Numer. Simul..

[45]  Xiangcheng Zheng,et al.  Wellposedness and regularity of the variable-order time-fractional diffusion equations , 2019, Journal of Mathematical Analysis and Applications.

[46]  Jinhong Jia,et al.  A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes , 2019, Comput. Math. Appl..

[47]  Ji Ma,et al.  A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains , 2019, Appl. Math. Lett..

[48]  Zhi-Zhong Sun,et al.  A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation , 2019, Appl. Math. Comput..

[49]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[50]  Feng Wang,et al.  Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation , 2019, J. Comput. Appl. Math..

[51]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[52]  Hongguang Sun,et al.  A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications , 2019, Fractional Calculus and Applied Analysis.

[53]  E. Süli,et al.  Well-posedness of the fractional Zener wave equation for heterogeneous viscoelastic materials , 2019, Fractional Calculus and Applied Analysis.

[54]  Xiangcheng Zheng,et al.  An Optimal-Order Numerical Approximation to Variable-order Space-fractional Diffusion Equations on Uniform or Graded Meshes , 2020, SIAM J. Numer. Anal..