Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes

We model stochastic chemical systems with diffusion by a reaction-diffusion master equation. On a macroscopic level, the governing equation is a reaction-diffusion equation for the averages of the chemical species. On a mesoscopic level, the master equation for a well stirred chemical system is combined with a discretized Brownian motion in space to obtain the reaction-diffusion master equation. The space is covered in our method by an unstructured mesh, and the diffusion coefficients on the mesoscale are obtained from a finite element discretization of the Laplace operator on the macroscale. The resulting method is a flexible hybrid algorithm in that the diffusion can be handled either on the meso- or on the macroscale level. The accuracy and the efficiency of the method are illustrated in three numerical examples inspired by molecular biology.

[1]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..

[2]  P. V. von Hippel,et al.  Diffusion-controlled macromolecular interactions. , 1985, Annual review of biophysics and biophysical chemistry.

[3]  Mohammad-Ali Malek-Mansour,et al.  A new approximation scheme for the study of fluctuations in nonuniform nonequilibrium systems , 1979 .

[4]  Andreas Hellander,et al.  A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter , 2008, J. Sci. Comput..

[5]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[6]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[7]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[8]  Yang Cao,et al.  Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems , 2005 .

[9]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[10]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[11]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[12]  Andreas Hellander,et al.  Hybrid method for the chemical master equation , 2007, J. Comput. Phys..

[13]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[14]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[15]  C. Lumsden,et al.  Stochastic Simulation of Coupled Reaction-Diffusion Processes , 1996 .

[16]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[17]  Vidar Thomée,et al.  A Lumped Mass Finite-element Method with Quadrature for a Non-linear Parabolic Problem , 1985 .

[18]  David Bernstein,et al.  Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. L. George,et al.  Automatic mesh generation and finite element computation , 1996 .

[20]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[21]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[23]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[24]  Jaap A. Kaandorp,et al.  Computational methods for diffusion-influenced biochemical reactions , 2007, Bioinform..

[25]  P. Guptasarma,et al.  Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  Johan Elf,et al.  Kinetics in Spatially Extended Systems , 2006 .

[27]  R Metzler,et al.  The future is noisy: the role of spatial fluctuations in genetic switching. , 2001, Physical review letters.

[28]  Stefan Engblom,et al.  Computing the moments of high dimensional solutions of the master equation , 2006, Appl. Math. Comput..

[29]  Magnus Svärd,et al.  An accuracy evaluation of unstructured node-centred finite volume methods , 2008 .

[30]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[32]  Martin Howard,et al.  Stochastic model for Soj relocation dynamics in Bacillus subtilis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Per Lötstedt,et al.  Fokker–Planck approximation of the master equation in molecular biology , 2009 .

[34]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[35]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[36]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[37]  Vidar Thomée,et al.  On the existence of maximum principles in parabolic finite element equations , 2008, Math. Comput..

[38]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.

[39]  David Fange,et al.  Noise-Induced Min Phenotypes in E. coli , 2006, PLoS Comput. Biol..

[40]  A. Arkin,et al.  It's a noisy business! Genetic regulation at the nanomolar scale. , 1999, Trends in genetics : TIG.

[41]  Russel E. Caflisch,et al.  A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .

[42]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[43]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[44]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[45]  J. Hasty,et al.  Dynamics of single-cell gene expression , 2006, Molecular systems biology.

[46]  Samuel A. Isaacson,et al.  Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations , 2006, SIAM J. Sci. Comput..