Evolutionary Computation in Practice

This book is loaded with examples in which computer scientists and engineers have used evolutionary computation - programs that mimic natural evolution - to solve real problems. They aren t abstract, mathematically intensive papers, but accounts of solving important problems, including tips from the authors on how to avoid common pitfalls, maximize the effectiveness and efficiency of the search process, and many other practical suggestions. Some of the authors have already won Humies - Human Competitive Results Awards - for the work described in this book. I highly recommend it as a highly concentrated source of good problem-solving approaches that are applicable to many real-world problems.

[1]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[2]  Andrew M. Sutton,et al.  Using Adaptive Priority Weighting to Direct Search in Probabilistic Scheduling , 2007, ICAPS.

[3]  Arthur K. Kordon,et al.  Application Issues of Genetic Programming in Industry , 2006 .

[4]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[5]  Tina Yu,et al.  Hierarchical Processing for Evolving Recursive and Modular Programs Using Higher-Order Functions and Lambda Abstraction , 2001, Genetic Programming and Evolvable Machines.

[6]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[7]  Peter J. Bentley,et al.  Methods to Evolve Legal Phenotypes , 1998, PPSN.

[8]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[9]  Nicola Beume,et al.  Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Arthur K. Kordon,et al.  Symbolic Regression In Design Of Experiments: A Case Study With Linearizing Transformations , 2002, GECCO.

[11]  L. Darrell Whitley,et al.  Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.

[12]  Arthur K. Kordon,et al.  Robust Inferential Sensors Based on Ensemble of Predictors Generated by Genetic Programming , 2004, PPSN.

[13]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[14]  Olivier François,et al.  Design of evolutionary algorithms-A statistical perspective , 2001, IEEE Trans. Evol. Comput..

[15]  Bob Johnstone,et al.  Business plan , 1990, Nature.

[16]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[17]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[18]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[19]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[20]  Gilbert Syswerda,et al.  The Application of Genetic Algorithms to Resource Scheduling , 1991, International Conference on Genetic Algorithms.

[21]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[22]  Arthur K. Kordon,et al.  Robust soft sensor development using genetic programming , 2003 .

[23]  L. Darrell Whitley,et al.  A Comparison of Genetic Sequencing Operators , 1991, ICGA.

[24]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[25]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[26]  Shigenobu Kobayashi,et al.  Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem , 1997, ICGA.

[27]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[28]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[29]  Andrew W. Moore,et al.  K-means and Hierarchical Clustering , 2004 .

[30]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[31]  Giuseppe Rega,et al.  An exploration of chaos , 1996 .

[32]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[33]  John L. Bresina,et al.  Expected Solution Quality , 1995, IJCAI.

[34]  C. Coello,et al.  A Survey of Constraint-Handling Techniques Based on Evolutionary Multiobjective Optimization , 2006 .

[35]  Felix R. Hoots,et al.  SPACETRACK REPORT NO. 3 Models for Propagation of , 1988 .

[36]  George Coulouris,et al.  Distributed systems - concepts and design , 1988 .

[37]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[38]  L. Darrell Whitley,et al.  Scheduling Space–Ground Communications for the Air Force Satellite Control Network , 2004, J. Sched..

[39]  Donald A. Parish A Genetic Algorithm Approach to Automating Satellite Range Scheduling , 1994 .

[40]  D. Giesy,et al.  Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints , 1978 .

[41]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[42]  Heike Trautmann,et al.  Integration of Expert's Preferences in Pareto Optimization by Desirability Function Techniques , 2006 .

[43]  Jiju Antony,et al.  Implementing Six Sigma , 2001 .

[44]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[45]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[46]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  Felix R. Hoots,et al.  Models for Propagation of NORAD Element Sets , 1980 .

[48]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[49]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[50]  Milan Zeleny Multiple criteria decision making : instructor's manual to accompany , 1982 .

[51]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[52]  Carsten Witt,et al.  Collaborative Research Centre 531: Computational Intelligence – Theory and Practice (Sonderforschungsbereich 531: Computational Intelligence – Theorie und Praxis) , 2007, it Inf. Technol..

[53]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[54]  Clayton M. Christensen Seeing What's Next , 2004 .

[55]  S. Shafran,et al.  A B C d e f g ... , 1996, The Canadian journal of infectious diseases = Journal canadien des maladies infectieuses.

[56]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[57]  Arthur K. Kordon,et al.  Soft sensor development using genetic programming , 2001 .

[58]  Kalyanmoy Deb,et al.  Omni-optimizer: A Procedure for Single and Multi-objective Optimization , 2005, EMO.

[59]  Stefano Lonardi,et al.  Monotony of surprise and large-scale quest for unusual words. , 2003 .

[60]  Heike Trautmann,et al.  On the distribution of the desirability index using Harrington’s desirability function , 2006 .

[61]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[62]  F. Busse An exploration of chaos: J. Argyris, G. Faust and M. Haase, Elsevier, Amsterdam, 1994, 722 pp., ISBN 0-444-82002-7 (hardbound), 0-444-82003-5 (paperback) , 1994 .

[63]  Vangelis Th. Paschos,et al.  Probabilistic Combinatorial Optimization on Graphs , 2006 .

[64]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[65]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[66]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[67]  Jörn Mehnen,et al.  Using predators and preys in evolution strategies , 2005, GECCO '05.

[68]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[69]  R. A. Hamnett,et al.  British railway track : design, construction and maintenance , 1956 .

[70]  Rajkumar Roy,et al.  Development of a soft computing-based framework for engineering design optimisation with quantitative and qualitative search spaces , 2007, Appl. Soft Comput..

[71]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[72]  Jean-Paul Watson,et al.  The impact of approximate evaluation on the performance of search algorithms for warehouse scheduling , 1999 .

[73]  Arthur K. Kordon,et al.  Using Genetic Programming in Industrial Statistical Model Building , 2005 .

[74]  Rein Luus,et al.  Handling inequality constraints in direct search optimization , 2006 .

[75]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[76]  Thomas Jansen,et al.  Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions , 2002, Theor. Comput. Sci..

[77]  Joerg Fliege,et al.  Approximation techniques for the set of efficient points , 2001 .

[78]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[79]  Lakhmi C. Jain,et al.  Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms: Industrial Applications , 1998 .

[80]  Yiu-ming Cheung A competitive and cooperative learning approach to robust data clustering , 2004, Neural Networks and Computational Intelligence.

[81]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[82]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[83]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[84]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[85]  Marian B. Gorzalczany Computational Intelligence Systems and Applications - Neuro-Fuzzy and Fuzzy Neural Synergisms , 2002, Studies in Fuzziness and Soft Computing.

[86]  Adele E. Howe,et al.  Understanding Algorithm Performance on an Oversubscribed Scheduling Application , 2006, J. Artif. Intell. Res..

[87]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[88]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[89]  Darrell Whitley,et al.  Modeling Permutation En-codings in Simple Genetic Algorithm , 1995 .

[90]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[91]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[92]  Santhoji Katare,et al.  A hybrid swarm optimizer for efficient parameter estimation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[93]  Irwin King,et al.  Non-hierarchical Clustering with Rival Penalized Competitive Learning for Information Retrieval , 1999, MLDM.

[94]  M. Ehrgott Multiobjective Optimization , 2008, AI Mag..

[95]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .