An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators

We discuss the implementation of theoretical tests to assess the structural properties of simple or combined linear congruential and multiple recursive random number generators. In particular, we describe a package implementing the so-called spectral and lattice tests for such generators. Our programs analyze the lattices generated by vectors of successive or nonsuccessive values produced by the generator, analyze the behavior of generators in high dimensions, and deal with moduli of practically unlimited sizes. We give numerical illustrations. We also explain how to build lattice bases in several different cases, e.g., for vectors of far-apart nonsuccessive values, or for sublattices generated by the set of periodic states or by a subcycle of a generator, and, for all these cases, how to increase the dimension of a (perhaps partially reduced) basis.

[1]  H. Grothe,et al.  The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .

[2]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[3]  Pierre L'Ecuyer,et al.  Orbits and lattices for linear random number generators with composite moduli , 1996, Math. Comput..

[4]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[5]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[6]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[7]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[8]  A. Grube,et al.  Mehrfach rekursiv‐erzeugte Pseudo‐Zufallszahlen , 1973 .

[9]  W. A. Beyer,et al.  The lattice structure of multiplicative congruential pseudo-random vectors , 1971 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[11]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  Paul Bratley,et al.  A guide to simulation , 1983 .

[14]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[15]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[16]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  G. S. Fishman Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .

[18]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[19]  P. L’Ecuyer,et al.  Structural properties for two classes of combined random number generators , 1990 .

[20]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[21]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[22]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .