IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical Simulations – Structure, Applications, Latest Developments

We give a short description of IMD, a classical molecular dynamics package for the simulation of condensed matter. The properties of molecular dynamics simulations will be given with examples of their implementation in IMD. We further report on multi-scale simulations with IMD, the determination of accurate interactions with potfit and the porting of IMD to GPUs.

[1]  P. Brommer,et al.  Ordering and correlation of cluster orientations in CaCd6 , 2007 .

[2]  E. Suard,et al.  Anomalous vibrational dynamics in the Mg 2 Zn 11 phase , 2011 .

[3]  Robert Walkup,et al.  Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Roth,et al.  Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum , 2011 .

[5]  Franz Gähler,et al.  A MOLECULAR DYNAMICS RUN WITH 5 180 116 000 PARTICLES , 2000 .

[6]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[7]  Timothy C. Germann,et al.  TRILLION-ATOM MOLECULAR DYNAMICS BECOMES A REALITY , 2008 .

[8]  Johannes Roth,et al.  Laser Ablation of Metals , 2010, High Performance Computing in Science and Engineering.

[9]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[10]  J. Roth,et al.  Femtosecond laser ablation of aluminium , 2009 .

[11]  Siegfried Schmauder,et al.  Simulation of crack propagation in alumina with ab initio based polarizable force field. , 2012, The Journal of chemical physics.

[12]  A. V. Duin,et al.  The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations , 2005 .

[13]  Sandro Scandolo,et al.  An ab initio parametrized interatomic force field for silica , 2002 .

[14]  Philipp Beck,et al.  Ab initio based polarizable force field generation and application to liquid silica and magnesia. , 2011, The Journal of chemical physics.

[15]  Huajian Gao,et al.  Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[17]  A. Elsener,et al.  A local chemical potential approach within the variable charge method formalism , 2008 .

[18]  Influence of polarizability on metal oxide properties studied by molecular dynamics simulations. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Franz Gähler,et al.  Direct Wolf summation of a polarizable force field for silica. , 2010, The Journal of chemical physics.

[20]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[21]  T. Lippert,et al.  Polymer pixel enhancement by laser-induced forward transfer for sensor applications , 2010 .

[22]  J. Roth,et al.  Molecular Dynamics Simulations of Laser Ablation in Metals: Parameter Dependence, Extended Models and Double Pulses , 2013 .

[23]  J. Roth Shock waves in complex binary solids : Cubic Laves crystals, quasicrystals, and amorphous solids , 2005 .