Effect of porosity on Curle’s dipolar sources on an aerofoil in turbulent flow

[1]  L. Ayton,et al.  Downstream porosity for the reduction of turbulence-aerofoil interaction noise , 2022, Journal of Sound and Vibration.

[2]  M. Meinke,et al.  Investigation of Curle's Dipolar Sources on a Porous Airfoil Interacting with Incoming Turbulence , 2022, 28th AIAA/CEAS Aeroacoustics 2022 Conference.

[3]  C. Schram,et al.  Development of a didactic demonstrator for flow-induced noise mechanisms and mitigation technologies. , 2022, The Journal of the Acoustical Society of America.

[4]  M. Merkel,et al.  Permeable Leading Edges for Airfoil and Fan Noise Reduction in Disturbed Inflow , 2021, AIAA Journal.

[5]  L. Ayton,et al.  Downstream Perforations for the Reduction of Turbulence-Aerofoil Interaction Noise: Part II - Theoretical Investigation , 2021, AIAA AVIATION 2021 FORUM.

[6]  D. Ragni,et al.  Experimental and Analytical Investigation of the Distortion of Turbulence Interacting with a Porous Airfoil , 2021, AIAA AVIATION 2021 FORUM.

[7]  Lorna J. Ayton,et al.  Spanwise varying porosity for the enhancement of leading-edge noise reduction , 2021, AIAA AVIATION 2021 FORUM.

[8]  S. Becker,et al.  Permeable Structures for Leading Edge Noise Reduction , 2021, AIAA AVIATION 2021 FORUM.

[9]  D. Ragni,et al.  Experimental investigation of turbulent coherent structures interacting with a porous airfoil , 2021, Experiments in Fluids.

[10]  S. Moreau,et al.  Rapid distortion theory of turbulent flow around a porous cylinder , 2021, Journal of Fluid Mechanics.

[11]  D. Ragni,et al.  Numerical investigation of leading edge noise reduction on a rod-airfoil configuration using porous materials and serrations , 2021, Journal of Sound and Vibration.

[12]  Matthew J. Colbrook,et al.  Reducing aerofoil–turbulence interaction noise through chordwise-varying porosity , 2020, Journal of Fluid Mechanics.

[13]  L. Ayton,et al.  On the noise reduction mechanisms of porous aerofoil leading edges , 2020 .

[14]  M. Meinke,et al.  On the role of turbulence distortion on leading-edge noise reduction by means of porosity , 2020, Journal of Sound and Vibration.

[15]  M. Roger,et al.  On the Turbulence-Impingement Noise of a NACA-12 Airfoil with Porous Inclusions , 2020, AIAA AVIATION 2020 FORUM.

[16]  M. Meinke,et al.  Prediction of Noise Mitigation by Porous Media based on a Direct-Hybrid CFD/CAA Method , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[17]  D. Ragni,et al.  Experimental Investigation of Airfoil Turbulence-Impingement Noise Reduction Using Porous Treatment , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[18]  S. Moreau Turbomachinery Noise Predictions: Present and Future , 2019, Acoustics.

[19]  Mark Schrödter,et al.  Reduction of Turbulence Interaction Noise Through Airfoils With Perforated Leading Edges , 2019, Acta Acustica united with Acustica.

[20]  Jinjia Wei,et al.  The importance of controlling the upstream body wake in tandem cylinders system for noise reduction , 2018 .

[21]  Sina Haeri,et al.  On the reduction of aerofoil–turbulence interaction noise associated with wavy leading edges , 2016, Journal of Fluid Mechanics.

[22]  Mahdi Azarpeyvand,et al.  Tandem cylinder aerodynamic sound control using porous coating , 2015 .

[23]  Ennes Sarradj,et al.  Symbolic regression modeling of noise generation at porous airfoils , 2014 .

[24]  Christophe Schram,et al.  Reduction of airfoil turbulence-impingement noise by means of leading-edge serrations and/or porous materials , 2013 .

[25]  Wolfgang Schröder,et al.  An accurate moving boundary formulation in cut-cell methods , 2013, J. Comput. Phys..

[26]  Fulvio Scarano,et al.  On the use of time-resolved particle image velocimetry for the investigation of rod–airfoil aeroacoustics , 2012 .

[27]  Ennes Sarradj,et al.  Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise , 2012 .

[28]  Ennes Sarradj,et al.  Experimental assessment of the noise generated at the leading edge of porous airfoils using microphone array techniques , 2011 .

[29]  Michel Roger,et al.  Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part II: Application , 2009 .

[30]  C. Schram,et al.  A boundary element extension of Curle's analogy for non-compact geometries at low-Mach numbers , 2009 .

[31]  Ennes Sarradj,et al.  Noise Generation by Porous Airfoils , 2007 .

[32]  R. E. Uittenbogaard,et al.  The influence of wall permeability on turbulent channel flow , 2006, Journal of Fluid Mechanics.

[33]  Michel Roger,et al.  Back-scattering correction and further extensions of amiet's trailing-edge noise model. Part 1: theory , 2005 .

[34]  Damiano Casalino,et al.  A rod-airfoil experiment as a benchmark for broadband noise modeling , 2005 .

[35]  Christophe Bailly,et al.  Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise. , 2005 .

[36]  Sukumar Chakravarthy,et al.  Interfacing Statistical Turbulence Closures with Large-Eddy Simulation , 2004 .

[37]  S. Whitaker The Forchheimer equation: A theoretical development , 1996 .

[38]  Soogab Lee Reduction of blade-vortex interaction noise through porous leading edge , 1994 .

[39]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[40]  M. E. Goldstein,et al.  Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles , 1978, Journal of Fluid Mechanics.

[41]  R. Amiet Acoustic radiation from an airfoil in a turbulent stream , 1975 .

[42]  Ronald L. Panton,et al.  Wall pressure spectra calculations for equilibrium boundary layers , 1974, Journal of Fluid Mechanics.

[43]  J. C. R. Hunt,et al.  A theory of turbulent flow round two-dimensional bluff bodies , 1973, Journal of Fluid Mechanics.

[44]  S. Kaji,et al.  Generation of sound by rotor-stator interaction , 1970 .

[45]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[46]  N. Curle The influence of solid boundaries upon aerodynamic sound , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Sutharsan,et al.  Validation of a model for acoustic absorption in porous media , 2019 .

[49]  S. Moreau,et al.  Airfoil Turbulence-Impingement Noise Reduction by Porosity or Wavy Leading-Edge Cut : Experimental Investigations , 2016 .