High-pressure and high-temperature phase transitions in FeTiO 3 and a new dense FeTi 3 O 7 structure

High-pressure and high-temperature phase relations of FeTiO3 were investigated up to a pressure of about 74 GPa and 2600 K by synchrotron X-ray diffraction and analytical transmission electron microscopy. We conclude that FeTiO3 ilmenite transforms into the following phase(s) with increasing pressure: FeTiO3 (perovskite) at 20–30 GPa, Fe2TiO4 (Ca2TiO4-type) + TiO2 (OI-type) at 30–44 GPa and high temperature, FeO (wüstite) + TiO2 (OI) at 30–44 GPa and low temperature, and wüstite + FeTi3O7 (orthorhombic phase) above 44 GPa. Among these dense high-pressure polymorphs, FeTi3O7 is a new compound and its structure analysis was tried using particle swarm optimization simulation. This method successfully found a new high-density FeTi3O7 structure, and Rietveld refinement based on this model structure gave an excellent fit with the experimentally obtained X-ray diffraction pattern. This new high-density FeTi3O7 structure consists of polyhedra for monocapped FeO7 prisms, bicapped TiO8 prisms, and tricapped TiO9 prisms, which develop on the b-c plane and stack along the a axis. The dense compound assemblage found in FeTiO3 is promising for investigating the behavior of ABX3 compounds under ultrahigh pressures.

[1]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[2]  T. Yagi,et al.  High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5 , 2011 .

[3]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[4]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[5]  V. Prakapenka,et al.  Stability of the MgSiO3 analog NaMgF3 and its implication for mantle structure in super‐Earths , 2010 .

[6]  T. Kikegawa,et al.  The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa , 2010 .

[7]  T. Yamanaka,et al.  Jahn-Teller transition of Fe 2 TiO 4 observed by maximum entropy method at high pressure and low temperature , 2009 .

[8]  Taku Okada,et al.  A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides , 2009 .

[9]  L. Dubrovinsky,et al.  High-pressure behavior of perovskite: FeTiO_{3} dissociation into (Fe_{1-delta},Ti_{delta})O and Fe_{1+delta}Ti_{2-delta}O_{5}. , 2009, Physical review letters.

[10]  L. Dubrovinsky,et al.  Iron oxidation state of FeTiO[subscript 3] under high pressure , 2009 .

[11]  Y. Ohishi,et al.  α-Gd 2 S 3 -type structure in In 2 O 3 : Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide , 2008 .

[12]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[13]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[14]  R. Wentzcovitch,et al.  Potential ultrahigh pressure polymorphs of ABX3-type compounds , 2006 .

[15]  Renata M. Wentzcovitch,et al.  Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.

[16]  H. Mao,et al.  Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. , 2005, Journal of synchrotron radiation.

[17]  Y. Akahama,et al.  High-pressure Raman spectroscopy of diamond anvils to 250GPa: Method for pressure determination in the multimegabar pressure range , 2004 .

[18]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[19]  K. Hirose,et al.  A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements , 2004 .

[20]  R. Ahuja,et al.  Experimental and theoretical identification of a new high-pressure TiO2 polymorph. , 2001, Physical review letters.

[21]  S. Sutton,et al.  Pressure-volume equation of state of the high-pressure B2 phase of NaCl , 2001 .

[22]  K. Leinenweber,et al.  Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3 , 1991 .

[23]  K. Kitamura,et al.  Growth of FeTiO3 (ilmenite) crystals by the floating-zone method , 1978 .

[24]  G. Lorimer,et al.  The quantitative analysis of thin specimens , 1975 .

[25]  N. Sata,et al.  Development of a Software Suite on X-ray Diffraction Experiments , 2010 .

[26]  J. Parise,et al.  NaMgF 3 : A low-pressure analog of MgSiO 3 , 2006 .

[27]  R. Wyckoff Inorganic compounds R[x](MX[4])[y], R[x](M[n]X[p])[y], hydrates and ammoniates , 1965 .

[28]  Post-perovskite Phase Transition in MgSiO , 2022 .