Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature

In situ nanoindentation within a transmission electron microscope is used to investigate the deformation mechanisms in ultrafine-grained Al films. Deformation-induced grain growth resulting from grain boundary migration, grain rotation and grain coalescence is commonly observed as the indentation proceeds. In situ studies of nanograined films suggest that the same mechanisms are operative, though the difficulty of imaging nanosized grains makes the evidence less clear. The results suggest that grain growth and coalescence are important modes of response in the deformation of ultrafine- and nanograined materials.

[1]  Uwe Erb,et al.  Electrodeposition of nanocrystalline Ni-Fe alloys , 1995 .

[2]  Johannes Weertman,et al.  In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films , 2003 .

[3]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[4]  A. Minor,et al.  In-situ transmission electron microscopy study of the nanoindentation behavior of Al , 2002 .

[5]  I. Ovid’ko,et al.  Disclinations and rotational deformation in fine-grained materials , 2002 .

[6]  J. Weertman,et al.  Deformation behavior in nanocrystalline copper , 2001 .

[7]  J. W. Morris,et al.  Quantitative in situ nanoindentation in an electron microscope , 2001 .

[8]  I. Ovid’ko,et al.  Transformations of grain boundaries due to disclination motion and emission of dislocation pairs , 2003 .

[9]  H. V. Swygenhoven,et al.  Plastic behavior of nanophase Ni: A molecular dynamics computer simulation , 1997 .

[10]  R. Colton,et al.  Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals , 1997 .

[11]  P. Sanders,et al.  The strength of nanocrystalline metals with and without flaws , 1997 .

[12]  J. Morris The influence of grain size on the mechanical properties of steel , 2001 .

[13]  A. Minor,et al.  Development of a Nanoindenter for In Situ Transmission Electron Microscopy , 2001, Microscopy and Microanalysis.

[14]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[15]  A. Giannakopoulos,et al.  Discrete and continuous deformation during nanoindentation of thin films , 2000 .

[16]  Dieter M. Gruen,et al.  NANOCRYSTALLINE DIAMOND FILMS1 , 1999 .

[17]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[18]  S. Phillpot,et al.  Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation , 2003 .

[19]  K. Heinemann,et al.  Selected-zone dark-field electron microscopy. , 1972 .

[20]  C. Pande,et al.  Yield stress of fine grained materials , 1998 .

[21]  D. Follstaedt,et al.  Hall–Petch relationship in pulsed-laser deposited nickel films , 2004 .

[22]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[23]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[24]  K. A. Padmanabhan,et al.  Plastic deformation of nanocrystalline materials , 1997 .