Describing metal surfaces and nanostructures with orbital-free density functional theory

Abstract Orbital-free density functional theory (OF-DFT) can be made to scale linearly with sample size, allowing thousands of atoms to be treated explicitly with quantum mechanics. State-of-the-art kinetic energy density functionals and ion–electron pseudopotentials are used to obtain accurate structural property predictions for nanoparticles, nanowires, extended surfaces, and nanoindentation of simple metals.

[1]  Enrique Chacón,et al.  Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces , 1998 .

[2]  E. Carter,et al.  Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .

[3]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[4]  Emily A. Carter,et al.  Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation , 2004 .

[5]  Ken Gall,et al.  Surface-stress-induced phase transformation in metal nanowires , 2003, Nature materials.

[6]  MacLaren,et al.  Erratum: Dominant density parameters and local pseudopotentials for simple metals , 1995, Physical review. B, Condensed matter.

[7]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[8]  G. Lu,et al.  Quantum mechanics/molecular mechanics methodology for metals based on orbital-free density functional theory , 2007 .

[9]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[10]  Tarazona,et al.  Nonlocal kinetic energy functional for nonhomogeneous electron systems. , 1985, Physical review. B, Condensed matter.

[11]  Ab initio pseudopotentials for orbital-free density functionals , 1998 .

[12]  A. Aguado,et al.  Structural and thermal behavior of compact core-shell nanoparticles: Core instabilities and dynamic contributions to surface thermal stability , 2005 .

[13]  J. A. Alonso,et al.  Melting in Large Sodium Clusters: An Orbital-Free Molecular Dynamics Study , 1999, physics/9911042.

[14]  Y. A. Wang,et al.  Orbital-corrected orbital-free density functional theory. , 2006, The Journal of chemical physics.

[15]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[16]  N. Govind,et al.  Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B60, 16 350 (1999)] , 2001 .

[17]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[18]  Qin Wu,et al.  A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities , 2003 .

[19]  M. Ortiz,et al.  Effect of indenter-radius size on Au(001) nanoindentation. , 2003, Physical review letters.

[20]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[21]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[22]  Emily A. Carter,et al.  Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method , 2006 .

[23]  Chacón,et al.  Kinetic-energy density functional: Atoms and shell structure. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy , 2006, cond-mat/0612430.

[25]  Efthimios Kaxiras,et al.  From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.

[26]  Emily A. Carter,et al.  Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .

[27]  Orbital-free molecular dynamics simulations of melting in Na8 and Na20: Melting in steps , 1998, physics/9809019.

[28]  Small sodium clusters that melt gradually: Melting mechanisms in Na 30 , 2006 .

[29]  Molecular dynamics simulations of the meltinglike transition in Li13Na42 and Na13Cs42 clusters , 2005 .

[30]  J. Weeks,et al.  Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials , 2007, 0704.1878.

[31]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[32]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[33]  E Weinan,et al.  Multiscale simulations in simple metals: A density-functional-based methodology , 2004, cond-mat/0404414.

[34]  Richard J. Needs,et al.  A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .

[35]  Melting behavior of large disordered sodium clusters , 2000, physics/0005045.

[36]  Emily A. Carter,et al.  Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density Functional Theory Local Quasi-continuum Method , 2005, Multiscale Model. Simul..

[37]  Vincent L. Lignères,et al.  An Introduction to Orbital-Free Density Functional Theory , 2005 .

[38]  Emily A. Carter,et al.  Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .