Some Properties of A New Conjugate Gradient Method

It is proved that the new conjugate gradient method proposed by Dai and Yuan [5] produces a descent direction at each iteration for strictly convex problems. Consequently, the global convergence of the method can be established if the Goldstein line search is used. Further, if the function is uniformly convex, two Armijo-type line searches, the first of which is the standard Armijo line search, are also shown to guarantee the convergence of the new method.

[1]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[2]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[3]  J. Werner Über die globale Konvergenz von Variable-Metrik-Verfahren mit nicht-exakter Schrittweitenbestimmung , 1978 .

[4]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[5]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[6]  Ya-Xiang Yuan,et al.  Convergence properties of the Fletcher-Reeves method , 1996 .

[7]  R. Fletcher Practical Methods of Optimization , 1988 .

[8]  A. Goldstein On Steepest Descent , 1965 .

[9]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[10]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  Luigi Grippo,et al.  Stopping criteria for linesearch methods without derivatives , 1984, Math. Program..

[13]  L. Grippo,et al.  Global convergence and stabilization of unconstrained minimization methods without derivatives , 1988 .

[14]  B. V. Shah,et al.  Integer and Nonlinear Programming , 1971 .

[15]  J. Nocedal,et al.  A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .

[16]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[17]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[18]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[19]  J. L. Nazareth,et al.  Linear and nonlinear conjugate gradient-related methods , 1996 .

[20]  Luigi Grippo,et al.  A globally convergent version of the Polak-Ribière conjugate gradient method , 1997, Math. Program..