Parallel hyperheuristic: a self-adaptive island-based model for multi-objective optimization

This work presents a new parallel model for the solution of multi-objective optimization problems. The model combines a parallel island-based scheme with a hyperheuristic approach in order to raise the level of generality at which most current evolutionary algorithms operate. This way, a wider range of problems can be tackled since the strengths of one algorithm can compensate for the weaknesses of another. Computational results demonstrate that the model grants more computational resources to those algorithms that show a more promising behaviour.