Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur

[1]  E. Geissler,et al.  Laser Ablation Inductively Coupled Plasma Mass Spectrometry , 2015, Transplantation direct.

[2]  R. Ewing,et al.  The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits , 2014 .

[3]  M. Claire,et al.  Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes , 2013, Proceedings of the National Academy of Sciences.

[4]  M. Whitehouse Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S , 2012 .

[5]  Xiaoxia Wang,et al.  Triassic granitoids of the Qinling orogen, central China: Genetic relationship of enclaves and rapakivi-textured rocks , 2011 .

[6]  T. Bosak,et al.  Large Sulfur Isotope Fractionation Does Not Require Disproportionation , 2011, Science.

[7]  Yunpeng Dong,et al.  Tectonic evolution of the Qinling orogen, China: Review and synthesis , 2011 .

[8]  Chu Xuelei Chang Huajin Pyrite Framboids and Palaeo ocean Redox Condition Reconstruction , 2011 .

[9]  R. Large,et al.  A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits , 2011 .

[10]  J. Valley,et al.  In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ∼ 3.5 Ga Pilbara cherts , 2010 .

[11]  Jiangfeng Qin,et al.  Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China) , 2009 .

[12]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[13]  J. Grotzinger,et al.  Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life , 2009 .

[14]  R. Large,et al.  Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source , 2008 .

[15]  F. Robert,et al.  Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia , 2007 .

[16]  G. Beaudoin,et al.  Geology and geochemistry of the Dengjiashan Zn–Pb SEDEX deposit, Qinling Belt, China , 2007 .

[17]  M. Whitehouse,et al.  Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland , 2005 .

[18]  R. Ewing,et al.  Solubility of gold in arsenian pyrite , 2005 .

[19]  Zaojun Ye,et al.  Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA , 2005 .

[20]  G. Beaudoin,et al.  Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China , 2004 .

[21]  P. Emsbo,et al.  Origin of High-Grade Gold Ore, Source of Ore Fluid Components, and Genesis of the Meikle and Neighboring Carlin-Type Deposits, Northern Carlin Trend, Nevada , 2003 .

[22]  L. Ratschbacher,et al.  Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history , 2003 .

[23]  J. P. Greenwood,et al.  Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis , 2003 .

[24]  W. Ridley,et al.  Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique , 2002 .

[25]  S. Garwin,et al.  Geology, distribution, and classification of gold deposits in the western Qinling belt, central China , 2002 .

[26]  R. Krouse,et al.  Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur , 2001 .

[27]  M. Böttcher,et al.  Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction , 2001 .

[28]  D. Canfield Isotope fractionation by natural populations of sulfate-reducing bacteria , 2001 .

[29]  Jianming Liu,et al.  Geochemistry of the La'erma and Qiongmo Au–Se deposits in the western Qinling Mountains, China , 2000 .

[30]  Yunpeng Dong,et al.  An ophiolitic tectonic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implications , 1999 .

[31]  H. Day,et al.  Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China , 1998 .

[32]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. , 1997, Geochimica et cosmochimica acta.

[33]  T. Reischmann,et al.  Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: a review and new tectonic model , 1996 .

[34]  R. Vaughan,et al.  Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios , 1996 .

[35]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[36]  Wang Zhongcheng,et al.  Barite and witherite deposits in Lower Cambrian shales of South China; stratigraphic distribution and geochemical characterization , 1991 .

[37]  J. Hayes,et al.  34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria , 1988, Applied and environmental microbiology.

[38]  H. Ohmoto Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits , 1972 .

[39]  H. Thode,et al.  Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects , 1965 .

[40]  S. Rittenberg,et al.  MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES. , 1964, Journal of general microbiology.

[41]  Richard J. Goldfarb,et al.  Phanerozoic continental growth and gold metallogeny of Asia , 2014 .

[42]  J. Saunders,et al.  13.15 – Geochemistry of Hydrothermal Gold Deposits , 2014 .

[43]  Li Xiang New Understanding of Genesis of Baguamiao Gold Deposits , 2013 .

[44]  Li Jian-wei Occurrence and Enrichment Mechanism of Gold in the Qiuling Carlin-Type Gold Deposit,Zhen'an County,Shaanxi Province,China , 2012 .

[45]  J. Grotzinger,et al.  of animal life Group, southern Namibia: A consequence of low seawater sulfate at the dawn ) in the terminal Proterozoic Nama CAS S 34 δ > pyr S 34 δ Superheavy pyrite ( , 2012 .

[46]  J. Valley,et al.  High‐precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation , 2011 .

[47]  C. Johnson,et al.  Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits , 2009 .

[48]  Wang Xiao-xia Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt , 2008 .

[49]  Albert H. Hofstra,et al.  Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models , 2005 .

[50]  T. Baker,et al.  Distribution, character and genesis of gold deposits in metamorphic terranes , 2005 .

[51]  Zhang Fuxin Carlin and Carlin-like Gold Deposits in Western Qinling Mountains and Their Metallogenic Time, Tectonic Setting and Model , 2004 .

[52]  F. Robert,et al.  Gold Deposits in Metamorphic Belts: Overview of Current Understanding,Outstanding Problems, Future Research, and Exploration Significance , 2003 .

[53]  P. E. Brown,et al.  Characteristics and models for carlin-type gold deposits , 2000 .

[54]  Zhang Guowei,et al.  Geochemistry of the ophiolite and island-Arc volcanic rocks in the Mianxian-Lueyang suture zone, southern Qinling and their tectonic significance , 1999 .

[55]  J. Leventhal,et al.  Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada , 1991 .

[56]  H. Ohmoto Isotopes of sulfur and carbon , 1979 .