A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope

Planned rapid submillimeter (submm) gamma-ray-bursts (GRBs) follow-up observations conducted using the Greenland Telescope (GLT) are presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high altitude and dry weather porvide excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1) systematic detection of bright submm emissions originating from reverse shock (RS) in the early afterglow phase, (2) characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3) detections of GRBs at a high redshift as a result of the explosion of first generation stars through systematic rapid follow-ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.

[1]  R. M. Curado da Silva,et al.  XIPE: the X-ray imaging polarimetry explorer , 2013, Astronomical Telescopes + Instrumentation.

[2]  Satoki Matsushita,et al.  First-generation Science Cases for Ground-based Terahertz Telescopes , 2015, 1511.00839.

[3]  T. Sakamoto,et al.  EXTREMELY SOFT X-RAY FLASH AS THE INDICATOR OF OFF-AXIS ORPHAN GRB AFTERGLOW , 2015, 1504.07288.

[4]  D. Frail,et al.  EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE FERMI/LAT DETECTED GRB 130907A , 2014, 1411.7368.

[5]  D. Götz,et al.  The microchannel x-ray telescope for the gamma-ray burst mission SVOM , 2014, Astronomical Telescopes and Instrumentation.

[6]  Satoki Matsushita,et al.  225GHz opacity measurements at Summit camp, Greenland, for the GreenLand Telescope (GLT) site testing , 2014, Astronomical Telescopes and Instrumentation.

[7]  S. N. Paine,et al.  Instrumentation for single-dish observations with The Greenland Telescope , 2014, Astronomical Telescopes and Instrumentation.

[8]  P. Koch,et al.  Greenland telescope project: Direct confirmation of black hole with sub‐millimeter VLBI , 2014, 1407.2450.

[9]  D. Götz,et al.  The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM , 2014, Astronomical Telescopes and Instrumentation.

[10]  Y. Urata,et al.  SYNCHROTRON SELF-INVERSE COMPTON RADIATION FROM REVERSE SHOCK ON GRB 120326A , 2014, 1405.4331.

[11]  K. Wiersema,et al.  A comprehensive radio view of the extremely bright gamma-ray burst 130427A , 2014, 1404.1945.

[12]  D. A. Kann,et al.  THE AFTERGLOW OF GRB 130427A FROM 1 TO 1016 GHz , 2013, 1307.4401.

[13]  Bing Zhang,et al.  A complete reference of the analytical synchrotron external shock models of gamma-ray bursts , 2013, 1310.2181.

[14]  R. Margutti,et al.  A REVERSE SHOCK IN GRB 130427A , 2013, 1305.2453.

[15]  D. Frail,et al.  GRB 130131A: JCMT SCUBA-2 sub-mm observations. , 2013 .

[16]  J. P. Osborne,et al.  The Chinese-French SVOM Mission: studying the brightest astronomical explosions , 2012, Other Conferences.

[17]  T. Sakamoto,et al.  LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS , 2012, 1207.2835.

[18]  Y. Urata,et al.  ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS , 2012, 1202.6440.

[19]  A. J. van der Horst,et al.  GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.

[20]  Kingston,et al.  A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS , 2011, 1110.4124.

[21]  D. Frail,et al.  GRB 120422A: JCMT SCUBA-2 sub-mm observation. , 2012 .

[22]  A. J. Levan,et al.  Pre-ALMA observations of GRBs in the mm/submm range , 2011, 1108.1797.

[23]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[24]  R. Souza,et al.  Population III.1 and III.2 gamma-Ray Bursts: Constraints on the event rate for future radio and X-ray surveys , 2011, 1105.2395.

[25]  H. Nagakura,et al.  POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS , 2011, 1104.5691.

[26]  L. A. Antonelli,et al.  THE LATE PEAKING AFTERGLOW OF GRB 100418A , 2011 .

[27]  Y. Urata,et al.  WIDGET: System Performance and GRB Prompt Optical Observations , 2010, 1010.5035.

[28]  D. Bersier,et al.  GRB 090313 AND THE ORIGIN OF OPTICAL PEAKS IN GAMMA-RAY BURST LIGHT CURVES: IMPLICATIONS FOR LORENTZ FACTORS AND RADIO FLARES , 2010, 1009.4361.

[29]  Y. Urata,et al.  FIRST KOREAN OBSERVATIONS OF GAMMA-RAY BURST AFTERGLOWS AT MT. LEMMON OPTICAL ASTRONOMY OBSERVATORY (LOAO) , 2010 .

[30]  Petr Kubanek,et al.  The photometry pipeline of the watcher robotic telescope , 2010 .

[31]  D. Wanderman,et al.  The luminosity function and the rate of Swift's Gamma Ray Bursts , 2009, 0912.0709.

[32]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[33]  T. Sakamoto,et al.  TESTING THE Epeak–Eiso RELATION FOR GRBs DETECTED BY SWIFT AND SUZAKU-WAM , 2009, 0908.1335.

[34]  Yanguo Li,et al.  SVOM gamma ray monitor , 2009, 0907.2768.

[35]  Kazutaka Yamaoka,et al.  Suzaku-WAM, Konus-Wind, and Swift-BAT Observations of Prompt Emission of the High-Redshift GRB 050904 , 2009 .

[36]  B. Gendre,et al.  EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001–2008 , 2009, 0902.0898.

[37]  Yasushi Fukazawa,et al.  Design and In-Orbit Performance of the Suzaku Wide-Band All-Sky Monitor , 2009 .

[38]  D. L. Starr,et al.  OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION , 2008, 0803.3215.

[39]  E. Mazets,et al.  Broadband observations of the naked-eye γ-ray burst GRB 080319B , 2008, Nature.

[40]  J. P. Osborne,et al.  Swift captures the spectrally evolving prompt emission of GRB 070616 , 2007, 0711.3753.

[41]  T. Sakamoto,et al.  Testing the External-Shock Model of Gamma-Ray Bursts Using the Late-Time Simultaneous Optical and X-Ray Afterglows , 2007, 0707.2826.

[42]  C. Kouveliotou,et al.  Detailed study of the GRB 030329 radio afterglow deep into the non-relativistic phase , 2007, 0706.1321.

[43]  B. Ciardi,et al.  The radio to infrared emission of very high redshift gamma-ray bursts: probing early star formation through molecular and atomic absorption lines , 2005, astro-ph/0502218.

[44]  T. Soyano,et al.  Multicolor Shallow Decay and Chromatic Breaks in the GRB 050319 Optical Afterglow , 2006, astro-ph/0611323.

[45]  T. Sakamoto,et al.  Energy input and response from prompt and early optical afterglow emission in γ-ray bursts , 2006, Nature.

[46]  N. Gehrels,et al.  Evidence for chromatic X-ray light-curve breaks in Swift GRB afterglows and their theoretical implications , 2006, astro-ph/0604105.

[47]  K.,et al.  Multi-color Shallow Decay and Chromatic Breaks in the GRB 050319 Optical Afterglow , 2006 .

[48]  Gregory Y. Prigozhin,et al.  Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2 , 2005 .

[49]  J. Fynbo,et al.  The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation , 2005, astro-ph/0507488.

[50]  Y. Urata,et al.  Optical Afterglow Observations of the Unusual Short-Duration Gamma-Ray Burst GRB 040924 , 2005, astro-ph/0506232.

[51]  P. Mészáros,et al.  Inverse Compton X-Ray Flare from Gamma-Ray Burst Reverse Shock , 2005, astro-ph/0506157.

[52]  A. U. Postigo,et al.  Radio, millimeter and optical monitoring of GRB 030329 afterglow: constraining the double jet model , 2005, astro-ph/0506169.

[53]  P. Vreeswijk,et al.  SCUBA sub-millimeter observations of gamma-ray bursts - III. GRB 030329: the brightest sub-millimeter afterglow to date , 2005, astro-ph/0503573.

[54]  E E Fenimore,et al.  A link between prompt optical and prompt γ-ray emission in γ-ray bursts , 2005, Nature.

[55]  K. Kohno,et al.  Nobeyama Millimeter Array Observations of GRB 030329 : a Decay of Afterglow with Bumps and Molecular Gas in the Host Galaxy , 2004, astro-ph/0412261.

[56]  Ryszard S. Romaniuk,et al.  Pi of the Sky -- All-sky Real-time Search for Fast Optical Transients; arXiv:astro-ph/0411456v1 , 2004, astro-ph/0411456.

[57]  D. Frail,et al.  Accurate Calorimetry of GRB 030329 , 2004, astro-ph/0408002.

[58]  The color evolution of the optical afterglow of GRB 030329 and the implications for the underlying supernova SN 2003dh , 2004 .

[59]  J. G. Jernigan,et al.  Global characteristics of X-ray flashes and X-ray rich GRBs observed by HETE-2 , 2004, astro-ph/0409128.

[60]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[61]  N. Masetti,et al.  Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329 , 2004, astro-ph/0403504.

[62]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[63]  Merate,et al.  Late evolution of the X-ray afterglow of GRB 030329 , 2004, astro-ph/0402644.

[64]  T. Sakamoto,et al.  Spectral Evolution of the GRB 030329 Afterglow: Detection of the Supernova Nebular Phase Emissions ∗ , 2004 .

[65]  Naomasa Nakai,et al.  Radio Observations of the Afterglow of GRB 030329 , 2004, astro-ph/0401258.

[66]  Takashi Miyata,et al.  Early (<0.3 Days) R-Band Light Curve of the Optical Afterglow of GRB 030329 , 2004 .

[67]  Kotaro,et al.  Nobeyama Millimeter Array Observations of GRB 030329: a Decay of Afterglow with Bumps and Molecular Gas in the Host Galaxy , 2004 .

[68]  E. Rykoff,et al.  ROTSE-III Observations of the Early Afterglow from GRB 030329 , 2003, astro-ph/0309177.

[69]  D. Frail,et al.  Millimeter Observations of GRB 030329: Continued Evidence for a Two-Component Jet , 2003, astro-ph/0308188.

[70]  D. Frail,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[71]  Y. Urata,et al.  Multiband Optical Follow-up Observations of GRB 020813 at the Kiso and Bisei Observatories , 2003, astro-ph/0308113.

[72]  S. Djorgovski,et al.  The bright optical afterglow of the nearby γ-ray burst of 29 March 2003 , 2003, Nature.

[73]  Vilspa,et al.  The X-ray afterglow of GRB 030329 , 2003, astro-ph/0305564.

[74]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[75]  Bing Zhang,et al.  Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine , 2003, astro-ph/0302525.

[76]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[77]  W. T. Vestrand,et al.  The RAPTOR experiment: a system for monitoring the optical sky in real time , 2002, SPIE Astronomical Telescopes + Instrumentation.

[78]  T. Piran,et al.  On-Axis Orphan Afterglows , 2002, astro-ph/0207400.

[79]  K. Ioka,et al.  X-Ray Flashes from Off-Axis Gamma-Ray Bursts , 2002, astro-ph/0203224.

[80]  Z. Dai,et al.  Failed gamma-ray bursts and orphan afterglows , 2001, astro-ph/0112469.

[81]  Iain A. Steele The Liverpool robotic telescope , 2001 .

[82]  Shiho Kobayashi,et al.  Light Curves of Gamma-Ray Burst Optical Flashes , 2000, astro-ph/0009319.

[83]  Yuji Shirasaki,et al.  Performance of the wide-field x-ray monitor on board the High-Energy Transient Explorer 2 , 2000, Astronomical Telescopes and Instrumentation.

[84]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[85]  M. Feroci,et al.  Discovery of a Radio Flare from GRB 990123 , 1999, astro-ph/9903441.

[86]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[87]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[88]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.