Invariant multicones for families of matrices
暂无分享,去创建一个
[1] R. Holmes. Geometric Functional Analysis and Its Applications , 1975 .
[2] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[3] Jairo Bochi,et al. Continuity properties of the lower spectral radius , 2013, 1309.0319.
[4] Jonathan M. Borwein,et al. Stability of closedness of convex cones under linear mappings II , 2010 .
[5] Nicola Guglielmi,et al. Canonical Construction of Polytope Barabanov Norms and Antinorms for Sets of Matrices , 2015, SIAM J. Matrix Anal. Appl..
[6] Nicola Guglielmi,et al. Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..
[7] R. Rockafellar. Convex Analysis: (pms-28) , 1970 .
[8] J. Vandergraft. Spectral properties of matrices which have invariant cones , 1968 .
[9] Leiba Rodman,et al. On common invariant cones for families of matrices , 2009, 0903.0444.
[10] V. Yu. Protasov,et al. When do several linear operators share an invariant cone , 2010 .
[11] J. Bochi,et al. Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.
[12] Some characterizations of domination , 2009 .
[13] O. Perron,et al. Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .
[14] M. Tsatsomeros,et al. On matrices with common invariant cones with applications in neural and gene networks , 2005 .
[15] M. Zennaro,et al. Cones and matrix invariance: a short survey , 2018 .
[16] Ph. Furtwängler. Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen algebraischen Zahlkörpers , 1906 .
[17] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[18] O. Perron. Zur Theorie der Matrices , 1907 .
[19] G. Rota,et al. A note on the joint spectral radius , 1960 .