Invariant multicones for families of matrices

In this paper, we investigate sufficient conditions on the structure of the eigenspaces of a given finite family of matrices to assure the existence of an embedded pair of invariant multicones, which are the smallest and the biggest in a suitable and natural sense. Multicones, very similar structures to those known in the literature as 1-multicones, are quite natural generalizations of the classical cones. The conditions we find also suggest us a practical computational procedure for the actual construction of such invariant embedded pair.

[1]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[2]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[3]  Jairo Bochi,et al.  Continuity properties of the lower spectral radius , 2013, 1309.0319.

[4]  Jonathan M. Borwein,et al.  Stability of closedness of convex cones under linear mappings II , 2010 .

[5]  Nicola Guglielmi,et al.  Canonical Construction of Polytope Barabanov Norms and Antinorms for Sets of Matrices , 2015, SIAM J. Matrix Anal. Appl..

[6]  Nicola Guglielmi,et al.  Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..

[7]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[8]  J. Vandergraft Spectral properties of matrices which have invariant cones , 1968 .

[9]  Leiba Rodman,et al.  On common invariant cones for families of matrices , 2009, 0903.0444.

[10]  V. Yu. Protasov,et al.  When do several linear operators share an invariant cone , 2010 .

[11]  J. Bochi,et al.  Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.

[12]  Some characterizations of domination , 2009 .

[13]  O. Perron,et al.  Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .

[14]  M. Tsatsomeros,et al.  On matrices with common invariant cones with applications in neural and gene networks , 2005 .

[15]  M. Zennaro,et al.  Cones and matrix invariance: a short survey , 2018 .

[16]  Ph. Furtwängler Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen algebraischen Zahlkörpers , 1906 .

[17]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[18]  O. Perron Zur Theorie der Matrices , 1907 .

[19]  G. Rota,et al.  A note on the joint spectral radius , 1960 .