Brain expression quantitative trait locus and network 1 analysis reveals downstream effects and putative 2 drivers for brain-related diseases

[1]  D. Malhotra,et al.  Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders , 2022, Nature Neuroscience.

[2]  Michael F. Green,et al.  Mapping genomic loci implicates genes and synaptic biology in schizophrenia , 2022, Nature.

[3]  Nick C Fox,et al.  New insights into the genetic etiology of Alzheimer’s disease and related dementias , 2022, Nature Genetics.

[4]  Ewout J. N. Groen,et al.  Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology , 2021, Nature Genetics.

[5]  H. Westra,et al.  Linking common and rare disease genetics through gene regulatory networks , 2021, medRxiv.

[6]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[7]  H. Cui,et al.  POU2F2 regulates glycolytic reprogramming and glioblastoma progression via PDPK1-dependent activation of PI3K/AKT/mTOR pathway , 2021, Cell Death & Disease.

[8]  Ziheng Wang,et al.  Prognostic biomarker ZNF311 and its correlation with tumor progression and immune infiltrates in glioma. , 2021, World neurosurgery.

[9]  Ewout J. N. Groen,et al.  Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology , 2021, Nature Genetics.

[10]  Manolis Kellis,et al.  Single-cell deconvolution of 3,000 post-mortem brain samples for eQTL and GWAS dissection in mental disorders , 2021, bioRxiv.

[11]  Eun Sug Park,et al.  Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 , 2020, Lancet.

[12]  S. Ripke,et al.  Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia , 2020, medRxiv.

[13]  Y. Gilad,et al.  Where Are the Disease-Associated eQTLs? , 2020, Trends in genetics : TIG.

[14]  Valeriia Haberland,et al.  The MRC IEU OpenGWAS data infrastructure , 2020, bioRxiv.

[15]  Tom R. Gaunt,et al.  The variant call format provides efficient and robust storage of GWAS summary statistics , 2020, Genome Biology.

[16]  Daniel J. Gaffney,et al.  Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation , 2020, Nature Genetics.

[17]  Sonja W. Scholz,et al.  Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information , 2020, Nature Communications.

[18]  Kelly A. Frazer,et al.  Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants , 2020, Nature Communications.

[19]  David B. Goldstein,et al.  Enhancer Domains Predict Gene Pathogenicity and Inform Gene Discovery in Complex Disease. , 2020, American journal of human genetics.

[20]  A. Privat,et al.  CD38 in Neurodegeneration and Neuroinflammation , 2020, Cells.

[21]  G. Giovannoni,et al.  BMI and low vitamin D are causal factors for multiple sclerosis , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[22]  Sonja W. Scholz,et al.  Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies , 2019, The Lancet Neurology.

[23]  Nicholette D. Palmer,et al.  Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration , 2019, Nature Communications.

[24]  Chris Wallace,et al.  Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses , 2019, bioRxiv.

[25]  Shondra M. Pruett-Miller,et al.  Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. , 2019, Blood advances.

[26]  S. Siniossoglou,et al.  Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration , 2019, Neuron.

[27]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[28]  Simon C. Potter,et al.  Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility , 2019, Science.

[29]  C. Gaiteri,et al.  Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. , 2019, American journal of human genetics.

[30]  Karsten B. Sieber,et al.  Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels , 2019, Nature Genetics.

[31]  J. Morris,et al.  The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion , 2019, Acta Neuropathologica.

[32]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[33]  P. Barbarino,et al.  THE STATE OF THE ART OF DEMENTIA RESEARCH: NEW FRONTIERS , 2019, Alzheimer's & Dementia.

[34]  T. Ge,et al.  The causal role of circulating vitamin D concentrations in human complex traits and diseases: a large-scale Mendelian randomization study , 2019, bioRxiv.

[35]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[36]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[37]  C. Marcocci,et al.  Hereditary Hypercalcemia Caused by a Homozygous Pathogenic Variant in the CYP24A1 Gene: A Case Report and Review of the Literature , 2019, Case reports in endocrinology.

[38]  Stephen Burgess,et al.  A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits , 2019, Nature Communications.

[39]  Thomas E. Nichols,et al.  Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n=17,706) , 2019, Molecular Psychiatry.

[40]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[41]  Ellis Patrick,et al.  Deconvolving the contributions of cell-type heterogeneity on cortical gene expression , 2019, bioRxiv.

[42]  Genetic,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[43]  Nick C Fox,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[44]  Morris A. Swertz,et al.  Deconvolution of bulk blood eQTL effects into immune cell subpopulations , 2019, BMC Bioinformatics.

[45]  Jonathan P. Beauchamp,et al.  Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences , 2019, Nature Genetics.

[46]  Michael J. Purcaro,et al.  Revealing the brain's molecular architecture. , 2018, Science.

[47]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[48]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[49]  J. Mefford,et al.  A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context , 2018, Nature Communications.

[50]  Dajiang J. Liu,et al.  Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use , 2018, Nature Genetics.

[51]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[52]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[53]  S. Raychaudhuri,et al.  Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial , 2018, Genome Biology.

[54]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[55]  Bin Zhang,et al.  Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility , 2018, Nature Genetics.

[56]  E. Schadt,et al.  Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility , 2018, Nature Genetics.

[57]  Hannah Carter,et al.  Extracting allelic read counts from 250,000 human sequencing runs in Sequence Read Archive , 2018, bioRxiv.

[58]  P. Ragonese,et al.  CYP27A1, CYP24A1, and RXR-α Polymorphisms, Vitamin D, and Multiple Sclerosis: a Pilot Study , 2018, Journal of Molecular Neuroscience.

[59]  Birgit Sikkema-Raddatz,et al.  Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis , 2018, Nature Communications.

[60]  Y. Asmann,et al.  TMEM106B haplotypes have distinct gene expression patterns in aged brain , 2018, Molecular Neurodegeneration.

[61]  J. Morris,et al.  Genetic variants associated with Alzheimer’s disease confer different cerebral cortex cell-type population structure , 2018, Genome Medicine.

[62]  Stephen Burgess,et al.  Genomic atlas of the human plasma proteome , 2018, Nature.

[63]  Benjamin A. Logsdon,et al.  Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS , 2018, American journal of human genetics.

[64]  G. Davey Smith,et al.  Evaluating the potential role of pleiotropy in Mendelian randomization studies , 2018, Human molecular genetics.

[65]  C. V. von Bartheld,et al.  The Cellular Composition and Glia–Neuron Ratio in the Spinal Cord of a Human and a Nonhuman Primate: Comparison With Other Species and Brain Regions , 2018, Anatomical record.

[66]  M. Swertz,et al.  Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[67]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[68]  C. A. Glastonbury,et al.  Cell-Type Heterogeneity in Adipose Tissue Is Associated with Complex Traits and Reveals Disease-Relevant Cell-Specific eQTLs , 2018, bioRxiv.

[69]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[70]  M. G. van der Wijst,et al.  Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[71]  Clare Baecher-Allan,et al.  Multiple Sclerosis: Mechanisms and Immunotherapy , 2018, Neuron.

[72]  Warren W. Kretzschmar,et al.  Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression , 2017, Nature Genetics.

[73]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[74]  Kathryn S. Burch,et al.  Leveraging polygenic functional enrichment to improve GWAS power , 2017, bioRxiv.

[75]  M. Dallas,et al.  Multiple mechanisms mediating carbon monoxide inhibition of the voltage gated , 2018 .

[76]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[77]  Ellis Patrick,et al.  An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome , 2017, Nature Neuroscience.

[78]  S. Herculano‐Houzel,et al.  The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting , 2016, The Journal of comparative neurology.

[79]  Christian Gieger,et al.  Connecting genetic risk to disease end points through the human blood plasma proteome , 2016, Nature Communications.

[80]  Stephane E. Castel,et al.  Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change , 2016, bioRxiv.

[81]  Ba,et al.  Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk , 2016, Neurology: Genetics.

[82]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[83]  Olivier Delaneau,et al.  A complete tool set for molecular QTL discovery and analysis , 2016, Nature Communications.

[84]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[85]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[86]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[87]  Neil Buckholtz,et al.  Accelerating Medicines Partnership: Alzheimer’s Disease (AMP-AD) Knowledge Portal Aids Alzheimer’s Drug Discovery through Open Data Sharing , 2016, Expert opinion on therapeutic targets.

[88]  A. Benomar,et al.  Vitamin D deficiency and its role in neurological conditions: A review. , 2016, Revue neurologique.

[89]  Brian J. Eastwood,et al.  BrainSeq: Neurogenomics to Drive Novel Target Discovery for Neuropsychiatric Disorders , 2015, Neuron.

[90]  O. Andreassen,et al.  Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics , 2015, bioRxiv.

[91]  Christian A. Ross,et al.  Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.

[92]  C. Gomes,et al.  Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability , 2015, Front. Cell. Neurosci..

[93]  J. Neefjes,et al.  Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. , 2015, Brain : a journal of neurology.

[94]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[95]  N. Scolding,et al.  Purkinje Cell Pathology and Loss in Multiple Sclerosis Cerebellum , 2014, Brain pathology.

[96]  M. Bonder,et al.  Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration , 2014, BMC Research Notes.

[97]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[98]  A. Singleton,et al.  Genetic variability in the regulation of gene expression in ten regions of the human brain , 2014, Nature Neuroscience.

[99]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[100]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[101]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[102]  Allissa Dillman,et al.  Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis , 2014, Multiple sclerosis and related disorders.

[103]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[104]  J. Conroy,et al.  A novel locus for episodic ataxia:UBR4 the likely candidate , 2013, European Journal of Human Genetics.

[105]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[106]  Jun Yu,et al.  Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer , 2013, Oncogene.

[107]  J. Losy,et al.  The Role of Neurotrophins in Multiple Sclerosis—Pathological and Clinical Implications , 2012, International journal of molecular sciences.

[108]  Glenville Jones,et al.  25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. , 2012, Archives of biochemistry and biophysics.

[109]  K. Chan,et al.  Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction , 2012, Brain and behavior.

[110]  K. Chan,et al.  Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease , 2012, Translational Neurodegeneration.

[111]  R. Ophoff,et al.  Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression , 2012, PLoS genetics.

[112]  M. Konrad,et al.  Mutations in CYP24A1 and idiopathic infantile hypercalcemia. , 2011, The New England journal of medicine.

[113]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[114]  A. Blight,et al.  Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis , 2011, Current medical research and opinion.

[115]  S. Cuzzocrea,et al.  Neuroinflammation and neuroprotection: an update on (future) neurotrophin-related strategies in multiple sclerosis treatment. , 2011, Current medicinal chemistry.

[116]  Morris A. Swertz,et al.  The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button , 2010, BMC Bioinformatics.

[117]  Ying Cheng,et al.  The European Nucleotide Archive , 2010, Nucleic Acids Res..

[118]  J. Souberbielle,et al.  Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis? , 2010, Brain : a journal of neurology.

[119]  Luigi Ferrucci,et al.  Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain , 2010, PLoS genetics.

[120]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[121]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[122]  M. Schuelke,et al.  Comparative analysis of uncoupling protein 4 distribution in various tissues under physiological conditions and during development. , 2009, Biochimica et biophysica acta.

[123]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[124]  J. Hirschhorn,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Tables S1 to S7 References Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-specific Repressor Bcl11a , 2022 .

[125]  Jerzy K. Kulski,et al.  Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia , 2007, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[126]  Steve Best,et al.  cMYB is involved in the regulation of fetal hemoglobin production in adults. , 2006, Blood.

[127]  P. Calabresi,et al.  The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[128]  John D. Storey A direct approach to false discovery rates , 2002 .

[129]  D. Bonett,et al.  Sample size requirements for estimating pearson, kendall and spearman correlations , 2000 .

[130]  C. Heizmann,et al.  Differential expression of S100 calcium‐binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours , 2000, Neuropathology and applied neurobiology.

[131]  Hans Lassmann,et al.  Activated Human T Cells, B Cells, and Monocytes Produce Brain-derived Neurotrophic Factor In Vitro and in Inflammatory Brain Lesions: A Neuroprotective Role of Inflammation? , 1999, The Journal of experimental medicine.

[132]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[133]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[134]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[135]  J. Salzer Environmental risk factors for multiple sclerosis , 2013 .

[136]  Avner Schlessinger,et al.  ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI , 2012 .

[137]  Ming Zhan,et al.  Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress , 2007, NeuroMolecular Medicine.

[138]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..